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Abstract
Scholar performance evaluation is extremely important in research assessment decisions, such as funding allocation, academic rank-
ings, and academic promotion. In this article, we propose the institution Q model (IQ) and its two variants (IQ-2 and IQ-3), which
aim to evaluate the individual-level research ability to publish high-quality scientific papers. Specifically, our models integrate scientists’
institutions, countries and collaborators as valuable prior information and jointly evaluate the research ability of scientists from differ-
ent institutions. To estimate model parameters and hidden variables defined in our models, we propose a generic BBVI-EM algorithm.
To test the effectiveness of our models, we examine their performance on the synthetic data and the empirical data (17,750/26,992
scientists in the computer science/physics field). We find that our models can more accurately quantify the research ability of scientists
and institutions and more effectively predict scientists’ scientific impact (the h-index and total citations) than the Q model and com-
mon machine learning models. In conclusion, our models are effective evaluation and prediction tools for quantifying research ability
and predicting the scientific impact, and the BBVI-EM algorithm is an effective variational inference algorithm. This study makes a theo-
retical contribution to broaden the idea of incorporating the academic environment into scientific evaluation.
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1. Introduction

With the rapid development of science and technology, the number of publications has increased rapidly, and more and

more scientists are devoting themselves to scientific research [1]. Thus, studying author-level metrics effectively evalu-

ating scientists’ research performance has become an increasingly hot topic because of its practical importance for criti-

cal decisions in science, such as funding allocation, academic rankings and academic promotion [2–4].

The existing studies mainly present three approaches for evaluating scientists’ research performance. The first type is

citation-based metrics [1,5], which require less information and are easy to compute. The second type is network-based

metrics [6,7], which analyse the topology structure of the citation network and/or authorship network. The third type is
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altmetrics-based metrics [8,9], which use media information from social platform and/or academic platform. However,

previous studies still suffer from the following shortcomings: some metrics are criticised for the weak theoretical basis

and lack of interpretation, such as the h-index, which simply combine two quantities with unrelated meanings; some

metrics generally suffer from the time bias problem, and therefore it is difficult to use them to compare scientists from

different ages, such as cumulative citations; and some metrics cannot effectively cope with sparse data, and neglect aca-

demic environment [1].

Recently, Sinatra et al. [10] proposed the Q model, in which the Q parameter can truly account for the individual-level

research ability to publish high-quality scientific papers and is not affected by time. However, the Q model neglects

scientists’ academic environment, such as their institutions, countries and collaborators. Actually, working at a presti-

gious institution drives greater research performance among early-career researchers [11]. Way et al. [12] further found

that the characteristics of a prestigious institution facilitate productivity and prominence by providing a conducive work-

ing environment. Previous studies show that collaboration has an effect on scientists’ research performance [13–15].

Moreover, the Q model independently evaluates the research ability of scientists and, therefore, cannot effectively cope

with sparse data encountered frequently in scientific evaluation. In this study, we propose an explainable generative pro-

cess to comprehensively consider the academic environment, research ability, and randomness and present a probabilistic

graphical model to quantify research ability, which can effectively solve the above shortcomings while retaining the mer-

its of the Q model.

More specifically, we present the novel institution Q model and its two variants, which can integrate scientists’ institu-

tions, countries and collaborators as prior information, and jointly evaluates the research ability of scientists from differ-

ent institutions. To estimate the model parameters and hidden variables defined in our models, we also present the BBVI-

EM algorithm. Subsequently, we show that our models achieve better quantification performance of the research ability

of scientists and institutions than the Q model on the synthetic data and achieve a better prediction performance of the h-

index and total citations than the Q model and common machine learning models on the empirical data (17,750/26,992)

scientists in the computer science/physics field extracted from Microsoft Academic Graph data [16].

The current study has the following theoretical and practical implications. We propose the novel institution Q model

with an explainable generative process to comprehensively consider the academic environment, research ability and ran-

domness in the citation process. Our models are not only an effective evaluation tools to quantify the research ability of

scientists and institutions but also practical prediction tools to predict scientists’ scientific impact. This study broadens

the idea of how to incorporate the academic environment into scientific evaluation, and other researchers can draw les-

sons from our modelling methods. Moreover, we propose a universal and effective BBVI-EM algorithm, which can also

be used in the inference and estimation of probabilistic graphical models. Finally, at the end of this article, we also offer

practical guidelines for our models.

The rest of the article is organised as follows. In Section 2, we review related studies. In Section 3, we introduce the

institution Q model and the BBVI-EM algorithm. In Section 4, we clearly introduce the process of generating the syn-

thetic data and the process of collecting the empirical data. In Section 5, we provide an analysis of the experimental

results. In Sections 6 and 7, we discuss the contributions and limitations of our study.

2. Background

2.1. Reviews on author-level evaluation metrics

Scholar performance evaluation is extremely important in research assessment decisions [2–4], and might comprise not

only scientists’ scientific impact but also their course feedback, educational background, and funding experience [17]. In

this article, we focus on reviewing the author-level metrics evaluating scientists’ research performance, which can be

roughly divided into the following three categories: citation-based methods, network-based methods and altmetrics-based

methods.

The publication and citation counts are the most commonly used indicators to evaluate a scientist’s productivity and

impact [17,18]. The h-index simultaneously gauges scientists’ productivity and scientific impact [19,20]. Previous studies

have shown that the evaluation results based on the h-index are consistent with the peer review to a certain extent [21].

However, the h-index suffers from some obvious shortcomings. For example, the h-index puts newcomers at a disadvan-

tage, lacks sensitivity to performance changes, and cannot completely capture the distribution of citation frequencies

[22]. Therefore, a series of variants of the h-index, such as the g-index [23] and the hg-index [24], have been proposed

and analysed. Abbasi et al. [13] employed the g-index as a performance measure and found that scholars with more colla-

borators have higher g-index by social network analysis. Lungeanu et al. [15] found that scholars with lower h-index col-

laborate more in interdisciplinary teams. However, the h-index and its variants still have a weak theoretical basis because
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they combine two quantities with unrelated meanings. Recently, Zhou et al. [1] presented a simple ranking index which

considers the competition among scientists. They demonstrated that the new index achieves better prediction perfor-

mance in identifying prize-winning scientists than the h-index and the g-index. In conclusion, the raw publication counts

and raw citation count-based metrics are generally simple, effective and easy to understand. However, they ignore the

citation patterns under different topics and are criticised for their weak theoretical basis.

Network-based methods have also been widely utilised in evaluating scientists, in which scientists as well as papers

are generally defined as nodes, while citations, authorship and/or other bibliographic information are defined as edges.

For example, Radicchi et al. [25] proposed a PageRank-based algorithm to rank scientists in a citation network. They

showed that their score has better predictive power in terms of the assignment of major prizes and awards than total cita-

tion counts. Senanayake et al. [26] employed the PageRank algorithm to present a novel p-index based on the citation

network, which builds a fairer ranking of scientists compared with the h-index. Recently, Bioglio et al. [27] proposed a

novel inspiration score, which quantifies the citation rates of papers. They showed that the inspiration score is an effec-

tive index to detect the most inspiring scientists and papers in a citation network. In addition, Liu et al. [7] proposed the

AuthorRank index based on the co-authorship network, representing an obvious advantage over degree, closeness and

betweenness. Jiang et al. [28] presented hierarchical and non-hierarchical models to quantify the social influences of

scientist groups, in which multiple types of collaboration relationships are considered. Overall, network-based methods

use direct and indirect link relations and link weights between nodes to disclose the importance of scientists in the net-

work. However, obtaining accurate and complete networks is challenging, and network-based ranking methods often

have high computational complexity [2].

Many researchers employ altmetrics to evaluate scientists and papers. Haustein et al. [29] examined the use of aca-

demic profile platforms of a sample of bibliometricians, and found that altmetrics indeed reflect impact not reflected in

citation counts. Mikki et al. [9] analysed the profiles of 4,307 scientists affiliated to the University of Bergen, and showed

that the correlation between the traditional bibliometric indicators and social activity indicators is low. Ortega [30] ana-

lysed about 10,000 scholar profiles from the Spanish National Research Council, and found that there is little correlation

between altmetrics and literature metrics at the author level. Martı́n-Martı́n et al. [8] examined the profile of 811 scien-

tists from the bibliometrics field, and analysed 31 author-level metrics collected from academic profile platforms. They

found that altmetrics and citation metrics have different focuses. Fang et al. [31] investigated how frequently short links

to scientific papers are clicked on Twitter, and found that Twitter clicks are weakly correlated with scholarly impact

metrics. Lemke et al. [32] recently found that many researchers exhibit a certain scepticism about altmetrics. Taken over-

all, altmetrics tend to measure the social impact and social ability, which is not the focus of this study.

Recently, Sinatra et al. [10] proposed the Q model, in which the Q parameter can truly account for a scientist’s

research ability. However, their model neglects the academic environment of scientists, and cannot cope with sparse data

encountered frequently in scientific evaluation, which confines its prediction power. In this article, we provide a series

of better models for scientific research evaluation.

2.2. Reviews on probabilistic graphical model and its inference algorithm

Probabilistic graphical models with latent variables have been widely used in modern learning applications, such as text

mining, image processing, and information retrieval [33–38]. Probabilistic graphical models postulate a meaningful gen-

erative process responsible for the observation (X ), infer the hidden variables (Z), draw conclusion from the observed

data, and make predictions about new data [39]. The key issue of probabilistic graphical models is to derive the posterior

distribution of the hidden variables (P(ZjX )), which is generally intractable [40]. Therefore, practitioners generally resort

to two common approximate methods (i.e. Markov Chain Monte Carlo and variational inference) for estimating the pos-

terior distribution.

The basic idea of Markov Chain Monte Carlo is to sample a set of samples to approximate the target distribution, in

which a Markov chain is constructed to converge to the target distribution, and samples are sampled from that Markov

chain [41]. For example, Griffiths and Steyvers [42] computed full conditional distribution of the Latent

Dirichlet allocation model (LDA), P(ZijZ�i,X ), and employed the Gibbs sampling algorithm to sample from

P(ZijZ�i,X ). They utilised the samples to estimate the parameters in LDA. Rosen-Zvi et al. [43] presented the Author-

Topic model, in which authorship information is included. They also utilised Gibbs sampling to estimate the topic and

author distribution. However, to ensure the Markov chain converges, the chain should be run for enough iterations,

which is time-consuming.

The basic idea of variational inference is to use the Jessen inequality to obtain the Evidence Lower Bound (ELBO) of

the log likelihood (ELBO≤ logP(X , Z)), and find the member of a family of variational distributions that is closest to

the ELBO in KL distance [44]. However, for generic probabilistic graphical models and arbitrary variational
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distributions, there is no closed-form ELBO, which forces practitioners to design model-specific algorithms. The tedious

work of designing model-specific algorithms hinders practitioners from rapidly exploring diversified models. Recently,

Ranganath et al. [39] proposed a novel ‘black box’ variational inference algorithm (BBVI), which can be easily deployed

on any probabilistic graphical models. The core idea of the BBVI algorithm is to employ Markov Chain Monte Carlo to

approximate the gradient of the ELBO by sampling from the variational distribution, and use stochastic optimisation to

maximise the ELBO. However, the estimated gradient is a little bit problematic, which leads to unstable estimation

results. Moreover, Zhao et al. [45] used a variational auto-encoder framework (VAE), which is essentially a neural net-

work, to approximate the posterior of their topic model. Ning et al. [46] also employed the VAE to solve their nonpara-

metric topic model. In this article, we present the BBVI-EM algorithm based on the BBVI algorithm [39] and variational

EM algorithm [33], which can effectively solve our models.

3. Methodology

3.1. Problem definition

Inspired by previous studies [10,11,47,48], we understand research ability as the inherent ability of scientists to publish

high-quality papers by taking advantage of the available knowledge [10]. Unlike the number of publications and cita-

tions that can be directly observed and time-varying, a scientist’s research ability is an underlying characteristic, which

remains relatively stable over his or her career path and potentially affects productivity and the impact [11].

Quantifying research ability is a direct approach to evaluate scientists and a critical foundation for understanding their

research performance. This study aims to propose an effective and explainable evaluation model based on the probabilis-

tic graphical model to quantify scientists’ research ability in which academic environment (i.e. institutions, countries and

collaboration) are employed as valuable prior information.

3.2. Review of the Q model

Before introducing our model, first, we simply review the Q model [10]. In the Q model, C10
α, i (the number of citations

of a paper i authored by a scientist α 10 years after publication) is employed to gauge the quality of the paper, and is

assumed to be determined by the multiplicative processes between Qα and pi, in which Qα captures the research ability

of α, and pi indicates the luck, as shown in equation (1). Hence, a high-impact publication (large C10
α, i) is published by a

scientist with excellent research ability (large Qα) and good luck (large pi). Subsequently, they consider the log-normal

nature of P(C10
α, i), denote p̂= log(p) and Q̂= log(Q), and obtain the joint probability of ability, luck and productivity,

the trivariate normal distribution P(p̂, q̂, N̂)∼N (μ,�). Finally, a classical maximum likelihood estimation method is

employed to estimate Qα, as shown in equation (2). < logC10
α, i > indicates the average value of logC10

α, i of all papers

published by α. Their results show that p̂, Q̂ and N̂ are almost independent of each other, which effectively untangles

the role of productivity, luck and ability in a scientific career

C10
α, i =Qαpi ð1Þ

Qα = e< logC10
α, i

>�μp ð2Þ

However, the Q model ignores the academic environment, which may directly or indirectly affect scientists’ research

performance and in turn affect the process of quantifying research ability. Actually, scientists from the same institution

tend to cooperate frequently, and working at a prestigious institution drives better research performance among scientists

by providing a conducive working environment [11,12]. Hence, a scientist’s affiliated institution, the country where the

institution is located, and collaboration among scientists are important information for quantifying scientist’s research

ability. In addition, the Q model cannot effectively cope with sparse data encountered frequently in scientific evaluation.

Actually, young scientists lack enough time to accumulate sufficient publication records and citation records [1]. The

goal of this study is to provide a better evaluation model which can effectively solve the above shortcomings.

3.3. The institution Q model

This study proposes the institution Q model (IQ model), which integrates scientists’ affiliated institutions as valuable

prior information, and jointly evaluates all scientists from different institutions. The core idea of the IQ model is to

assume that the research ability of scientists from the same institution shares the same distribution, by which our model

can cope with data sparse in author-level evaluation and also explain the research ability of institutions. This simple but
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intuitive idea not surprisingly improves the performance of our model and broadens the thought for incorporating the

academic environment into scientific evaluation. We continue to use the notations used in the Q model and define the

following explainable generative process for a scientist’s publication sequence and citation records.

The IQ model assumes that there are several institutions (i.e. β∈ b), in which there exist many scholars in each institu-

tion (i.e. α∈ ab). For each scientist, individual publication and citation records are generated in the following three steps:

• Step 1. For each scientist α from an institution β, we sample α’s productivity from β’s productivity distribution,

Nα ∼ Poisson(λβ).

• Step 2. For the scientist α, we sample α’s research ability from β’s research ability distribution,

Qα ∼LogNormal(μβ, σ
2
β).

• Step 3. For each paper i authored by α, we sample the luck pi ∼LogNormal(μp, σ
2
P), and use the equation,

C10
α, i =Qαpi, to generate citation records.

In the above generative process, first, we sample the number of publications of α (Nα) from the Poisson distribution.

λβ represents the average productivity of β. Subsequently, we sample α’s research ability (Qα) from the LogNormal dis-

tribution, in which μβ indicates the average research ability of β. Finally, we repeatedly sample pi Nα times, and gener-

ate α’s citation records, (C10
α, 1,C10

α, 2, . . . ,C10
α,Nα

). μp and σP describe the randomness of the citation process in a specific

field. Unlike the Q model, the productivity of a scientist also plays a non-ignorable role in the institution Q model; that

is, more high-quality articles authored by the scientist will help him or her score higher research ability by twisting

known prior information about an institution. The graphical model representation of the institution Q model is shown in

Figure 1.

Moreover, we also propose two simple variants of the IQ model. In the first variant (IQ-2 model), we employ the

country in which an institution is located as priori information about the research ability of the institution by enriching

Step 2. Specifically, we assume that the research ability of institutions (μβ, σβ) from the same country shares the same

distribution (i.e. μβ ∼Normal(μγ, 1, σ
2
γ, 1) and σβ ∼LogNormal(μγ, 2, σ

2
γ, 2)). Hence, μβ and σβ also become latent vari-

ables, as shown by the green circle in Figure 1. In the second variant (IQ-3 model), we consider the collaboration among

scientists by modifying Step 3. Specifically, we model the quality of a paper as an outcome of joint efforts of Li et al.

[11], and use a linear combination of Qα of authors to determine C10
α, i (i:e:, logC10

α, i =
P

i∈Ai
wα, ilogQα + logpi)),

which means that all authors contributed equally to a paper (i.e. fractional count [49]), as shown by the red line in Figure

1. wα, i indicates the contribution ratio of α to i (
P

i∈Ai
wα, i = 1), and Ai is the set of authors of i.

In the above models (IQ, IQ-2, and IQ-3), Nα is independent from Qα and pi in the generative process, which is based

upon the conclusions from the Q model. Hence, Nα can be seen as an ancillary variable, and we can generally ignore its

randomness in the subsequent development [33]. In the IQ model, the joint distribution of the observed data

(Nα,C10
α, i, βα), hidden variables (Qα, pi), and model parameters (μβ, σβ, μP, σP) is shown in equation (3). In the IQ-2

model, the joint distribution of the observed data (Nα,C10
α, i, βα), hidden variables (μβ, σβ,Qα, pi), and model parameters

(μγ, 1, σγ, 1, μγ, 2, σγ, 2, μP, σP) is shown in equation (4). In the IQ-3 model, the observed data, hidden variables and

model parameters are the same as those in the IQ model, but Step 3 is different, as shown in equation (5).

Figure 1. Graphical model representation of the institution Q model.
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Different from the Q model, the inferential problem of our models is to compute the posterior distribution of the hid-

den variable (Z) given the observed data (X ), P ZjXð Þ. Unfortunately, this distribution is intractable to compute. Hence,

we propose the BBVI-EM algorithm to approximate it

P(X , Z)= Qβ
β

Qαβ
α

P(Nα; λβ)P(Qα;μβ, σβ)
QNα

i= 1

P(log(C10
α, i)� log(Qα);μp, σp) ð3Þ

P(X , Z)= Qγ
γ

Qβγ
β

P(μβ;μγ, 1, σγ, 1)P(σβ;μγ, 2, σγ, 2)

× Qαβ
α

P(Nα; λβ)P(Qα;μβ, σβ)
QNα

i= 1

P(log(C10
α, i)� log(Qα);μp, σp) ð4Þ

P(X , Z)= Qβ
β

Qαβ

α

P(Nα; λβ)P(Qα;μβ, σβ)× QNα

i= 1

P log(C10
α, i)�

P
i∈Ai

wα, ilogQα;μp, σp

 !
ð5Þ

3.4. Inference and parameter estimation

To approximate the posterior distribution (P ZjXð Þ), we propose the BBVI-EM algorithm based on the variational EM

algorithm [33] and BBVI [39]. The BBVI-EM is a generic algorithm that can be easily deployed in our models to opti-

mise iteratively variational parameters (φ) and model parameters (ψ), by which Qα can be estimated. The BBVI-EM alle-

viates the problematic gradient of ELBO in the BBVI and produces stable estimation results, as shown in Supplemental

Appendix 1. We present the pseudo-code of the BBVI-EM algorithm in Table 1.

Specifically, first, we employ the BBVI algorithm to approximate P(ZjX ). To this aim, a series of variational distri-

bution q(Z;φ) with the free variational parameters (φ) are introduced. Our goal is to adjust the variational parameters so

that q(Z;φ) is close to P(ZjX , ψ); that is to minimise the KL distance between them, KL(q(Zjφ)jjP(ZjX , ψ)). Notably,

minimising the KL distance is equal to maximising the ELBO, L(φ) [41], as shown in equation (6). Taking the IQ model

as an example, the specific mathematical form of ELBO is shown in equation (7). For each scientist, a variational distri-

bution, qQα ∼LogNormal(μα, σ
2
α), is introduced, and therefore there are 2 *

P
β ab

�� �� variational parameters

L(φ)=Eq(z) logP(X , Z)� logq(Z)½ � ð6Þ

L(μα, σα)=Eq(Qαjμα, σα)½logP(Nα,C10
α, i, βα,Qα)� logq(Qαjμα, σα)�

Table 1. The pseudo code of the BBVI-EM algorithm.

Input: Data (X); Model parameters (ψ0); Variational parameters (φ0); Number of iterations
Output: Model parameters (ψ); Variational parameters (φ)

1 iters = 0;
2 While True
3 iters += 1; E_iters = 0; M_iters = 0;
4 While True # update variational parameters (E-step)
5 E_iters += 1
6 φm =φm�1 + ρrL φm�1ð Þ
7 If ψm � ψm�1j jED <ε1 or E_iters < num E iters then

break
8 While True # update model parameters (M-step)
9 M _iters += 1
10 ψm =ψm�1 + ρrL ψð Þ
11 If φm � φm�1j jED <ε2 or M_iters < num M iters then

break
12 If ( ψm � ψm�1j jED <ε1 and φm � φm�1j jED <ε2) or iters < num iters then

break
13 End

BBVI: ‘black box’ variational inference. EM: Expectation Maximization.
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α∈ ab; β∈ b ð7Þ

Subsequently, the noisy unbiased gradient of L(μα, σα) with Monte Carlo samples from qQα is calculated, as shown

in equation (8). A stochastic optimisation is used to maximise the ELBO. S indicates the number of samples

rL(μα, σα)= 1
S

PS
s= 1

rlogq(Zs)(logP(X , Zs)� logq(Zs))

Zs ∼ q(Z;μα, σα) ð8Þ

Second, we employ the variational EM algorithm to approximate P(ZjX ) by updating the variational parameters and

the model parameters iteratively, as shown in lines 6 and 10 of Table 1. The two steps are repeated until the ELBO con-

verges. Finally, μα can be used to estimate Qα, and σα can be used to evaluate the accuracy of the estimation. μβ explains

the research ability of an institution, and σβ reflects the different degree of individual ability of scientists from the institu-

tion. Our code is available online.1

4. Data

4.1. Synthetic data generation

One of the important uses of the institution Q model is to evaluate the research ability of a scientist (Qα), which is actu-

ally an unknown hidden variable, and its real value can never be known to us in a real scenario. However, in the synthetic

data generated by the generative process mentioned above, we can obtain not only the value of observation (Nα,C10
α, i) but

also true value of the hidden variables and model parameters. Hence, first, we evaluate the estimation accuracy of Qα on

the synthetic data. Qα in the Q model is estimated by the maximum likelihood estimation method, and Qα in our model is

estimated by the BBVI-EM algorithm.

Here, we clarify the experimental setup in synthetic data generation. Specifically, we sample the model parameters of

jbj institutions, μβ, log(σβ), from Normal(0, 1). For each institution β∈b, we sample the research ability of jabj scien-

tists from LogNormal(μβ, σ
2
β). For each scientist α∈ ab, we sample Nα from Poisson(λβ), and then sample pi Nα times

from LogNormal(μP, σ
2
P). For simplicity, for each institution, λβ and jabj are, respectively, the same. Notably, for each

scientist, if Qα is increased or decreased by μp, its relative value is not affected, and therefore μp is always set to 0. We

repeat our experiment at different values of jbj, jabj, λβ, σP, as shown in Table 2. The simple synthetic data (Simulation

1–3) only supports the information required by the Q and IQ models, by which we compare the quantification perfor-

mance of the two models. Comparison results on more complicated synthetic data supporting the IQ-2 and IQ-3 models

can be found in our Supplemental Appendix 1.

4.2. Empirical data collection and preprocessing

Another important use of the institution Q model is the predictive power of Qα.To compare the predictive power of the Q

model and the IQ, IQ-2 and IQ-3 models on the empirical data, we employ Microsoft Academic Graph (MAG) data [16]

as our dataset. FoSs (field of study) generated in the MAG are employed to identify topics of papers. Subsequently, we,

respectively, select scientists in the computer science field (CS) and scientists in the physics field to create two empirical

datasets according to the following conditions:

Table 2. The experimental setup in the synthetic data generation.

Parameter Simulation 1 Simulation 2 Simulation 3

jbj 14 14 28
jabj 10 20 40
λβ 10 15 20
μp 0 0 0
log(σP) 1 2 3
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1. First, we choose scientists in the CS/physics field, who published their first paper between 1990 and 2000, and

have published at least 30 papers until 2010, as research objects. If FoSs of a paper contains ‘Computer Science’

( ‘Physics’), the paper belongs to the CS (physics) field.

2. Second, for simplicity, we identify an affiliated institution of a scientist by counting the number of papers s/he

published in her or his institution. This simplification is not necessary for our model. We determine the country

where an institution is located through its latitude and longitude. Subsequently, we select institutions with at least

30 scientists and their scientists as our subjects. There are a total of 17,750 (26,992) scientists left in the CS

(physics).

3. Third, we need to ensure that each paper has a citation record of at least 10 years; the publication records and

citation records of these scientists in the CS (physics) field from 1990 to 2010 are collected.

Notably, to ensure that the prediction experiments resemble the actual prediction situation, we do not employ N1 and

N2 to split the training data and test data, as Sinatra et al. [10] did, but use the time Y1 and Y2 instead. Because each scien-

tist may publish his or her N1th paper at different times, Therefore, we use publication records from 1990 to Y1 as the

training data (1990≤ Y1), and use publication records from Y1 to Y2 as the test data (Y2 ≤ 2010). Specifically, we use the

C10
α, i of papers from 1990 to Y1 to estimate Qα, and use the estimated Qα to predict the h-index and Ctot in Y2. This can be

achieved by sampling pi from Normal(μp, σP) for a paper, and calculating C10
α, i by equation (1) based on estimated pro-

ductivity. Considering that the majority of papers acquire most citations within 2 or 3 years after publication [50], the h-

index is approximately computed by C10
α, i, and Ctot is equal to the sum of C10

α, i of all papers authored by α [10].

5. Experiments and results

5.1. Evaluation metrics

To evaluate the quantification performance of the research ability (Qα and μβ) and the prediction performance of the

future impact (the h-index and Ctot), we employ four popular criteria (Pearsonr, R2, RMSE, and MAE), as shown in

equations (9)–(11). The Pearson correlation coefficient (Pearsonr) measures the linear correlation between the predicted

value yn
^

and the real value yn. The goodness of fit (R2) gauges the overall relationship between yn
^

and yn. The root mean

square error (RMSE) and mean absolute error (MAE), respectively, measure the variation of yn
^

to yn and the average of

absolute errors between yn
^

and yn. N denotes the number of samples. yn and ŷn indicate the average of yn and the aver-

age of yn
^

, respectively. In the experiments on the synthetic data and the empirical data, yn represents Qα or μβ and the

h-index or Ctot, respectively

Pearsonr =
PN

n= 1 (yn � yn)(ŷn � ŷn)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n= 1 (yn � yn)2(ŷn � ŷn)

2
q ð9Þ

R2 = 1�
PN

n= 1 (yn � ŷn)2PN
n= 1 (yn � yn)2

ð10Þ

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n= 1

(yn � ŷn)2

s
ð11Þ

MAE= 1
N

PN
n= 1

yn � ŷnj j ð12Þ

5.2. Quantification performance analysis

We compare the quantification performance of the research ability (Qα and μβ) of the IQ model and that of the Q model

on synthetic data. Due to the fact that hidden research ability cannot be observed, common machine learning models are

generally unable to cope effectively with this issue for lacking of training data. Therefore, we only compare with the Q

model. However, in the Q model, μβ is not defined, and we simply employ the average of estimated Qα of all scientists

from β to estimate μβ (i.e.
P

α∈ ab
Qα=jabj).

Specifically, we repeat the experiments 20 times under each configuration (Simulation 1–3, as shown in Table 2). The

t-test is employed to test the significant difference between the estimation accuracy of Qα and μβ in terms of Pearsonr,

R2, RMSE, and MAE. We report the average of each evaluation metric in Table 3. The ‘bold text’ indicates the best
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result, and ‘***’ represents the significant level. Notably, R2 may take a negative value, because the model can be arbi-

trarily worse. Therefore, we define R2 = max (R2, 0), before averaging R2.

As shown in Table 3, in simulation 1–3, our model has significantly improved the estimation accuracy of Qα in terms

of all evaluation metrics. Specifically, in simulation 1, Pearsonr and R2 of our model on Qα are higher than 2.61% and

11.32% for the Q model. RMSE and MAE of our model on Qα are lower than 20.78% and 23.35% for the Q model. In

simulation 2, Pearsonr and R2 of our model on Qα are higher than 13.61% and 149.79% for the Q model. RMSE and

MAE of our model on Qα are lower than 41.74% and 44.50% for the Q model. In simulation 3, Pearsonr of our model

on Qα is higher than 39.94% for the Q model. R2 of the Q model on Qα

^
is always the negative value, and that of our

model is the positive value (0.3811). RMSE and MAE of our model on Qα are lower than 58.41% and 61.58% for the Q

model. Therefore, compared with the Q model, our model can more accurately quantify a scientist’ research ability. In

addition, we also find that our model slightly improves estimation accuracy of μβ than the average estimation method

mentioned above. The average productivity of scientists (λβ) is low (10, 15, and 20), which means that our model can

better cope with sparse data. Moreover, the larger value of log(σP) brings more noise to the observation data, which

makes the estimation accuracy of our model on simulation 3 the lowest and that on simulation 1 the best.

To clearly show the better quantification performance of the IQ model, we randomly select a result from simulation

2, and plot the real Qα (μβ) distribution and the estimated Qα (μβ) distribution. As shown in Figure 2, the red dot indi-

cates the real value for all scientists (institutions), and the blue dot indicates the estimated value. The black error bar

denotes the 95% confidence interval of estimated value, and the shorter error bar containing the real value means the

more accurate estimation. To be specific, we find that Qα estimated by the IQ model is closer to the real Qα than those

estimated by the Q model. In addition, the error bar in our model is shorter than that in the Q model. For estimated μβ,

we obtain similar results. We report comprehensive comparative results of Q, IQ, IQ-2 and IQ-3 models on more com-

plicated synthetic data in Supplemental Appendix 1. In conclusion, our model achieves a satisfied quantification perfor-

mance of the research ability of scientists and institutions, and effectively cope with sparse data in scientific evaluation.

5.3. Prediction performance analysis

In this section, we compare the predictive power of our models with the Q model and common machine learning models

on the empirical data. The publication records of 17,750 (26,992) scientists in the CS (physics) field is used to carry out

the following prediction experiments.

5.4. The prediction performance compared with the Q model

We compare the predictive power with the Q model. We use publication records from 1990 to 2000 (Y1) and C10
α, i of

those papers as the training data, by which we can estimate Qα of scientists. Subsequently, we use the estimated Qα to

predict the h-index and Ctot of α at Y2, where Y2 ∈ ½2001, 2010�. Specifically, for each scientist, we predict the h-index

Table 3. Quantification performance on the synthetic data.

Simulation Metrics The Q model The institution Q model

μβ Qα μβ Qα

Pearsonr 0.7865 0.9093 0.7846 0.9330***

Simulation 1 R2 0.4453 0.7791 0.4451 0.8673***

RMSE 0.7317 0.9211 0.7290 0.7282***

MAE 0.5506 0.7258 0.4968 0.5563***

Pearsonr 0.8341 0.7557 0.8403 0.8586***

Simulation 2 R2 0.5028 0.2908 0.5124 0.7264***

RMSE 0.6585 2.0001 0.6550 1.1652***

MAE 0.5065 1.5792 0.5073 0.8764***

Pearsonr 0.8090 0.4815 0.8120 0.6738***

Simulation 3 R2 0.4064 0.0000 0.4216 0.3811***

RMSE 0.7559 4.6290 0.7446 1.9252***

MAE 0.5996 3.6638 0.5940 1.4077***

RMSE: root mean square error; MAE: mean absolute error.

***p value < 0.001.
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and Ctot at Y2, by sampling 100 times and use the average value as the final forecast value. We report our prediction

experiments under different Y2.

As shown in Tables 4 and 5, we report the prediction accuracy on the h-index and Ctot in terms of Pearsonr, R2,

RMSE, and MAE, when Y2 is equal to 2003, 2006 and 2009, respectively. The ‘bold text’ indicates the best result. For

two empirical datasets, our models achieve better prediction accuracy than the Q model. Specifically, we find that the

IQ-2 model nearly always achieves the best accuracy, the IQ model yields slightly worse accuracy than the IQ-2 model,

and the IQ-3 model gets lower accuracy than the IQ model. This indicates that the institutions in which scientists work,

and the countries in which institutions are located are valuable prior information for scientific evaluation. Our model

can effectively use the prior information to quantify the research ability of scientists and in turn, accurately predict their

future impact. However, the inferior accuracy of the IQ-3 model compared with the IQ model may be due to the simplis-

tic linear combination way of modelling author’s contribution to the paper, and a more sophisticated way for determin-

ing wα, i may be proposed in the future. Moreover, as shown in Figure 3, we report scatterplots of predicted and real h-

index and Ctot of IQ-2 model when Y2 = 2006, in which the x-axis represents the predicted value and the y-axis repre-

sents the real value. The error bar represents a 95% confidence interval. The dots were distributed around the diagonal

line, which means that the IQ-2 model achieve good prediction accuracy. We also find similar results on the IQ and IQ-

2 models, which are reported in our Supplemental Appendix 2.

To further show the better prediction performance of our models, we also report the change of prediction accuracy of

the h-index and Ctot under Y2 ∈ ½2001, 2010�, as shown in Figures 4 and 5. The x-axis denotes Y2, while the y-axis denotes

the evaluation metrics. The brown, red, blue and black lines indicate the results of the Q, IQ, IQ-2 and IQ-3 models,

Figure 2. One case study from simulation 2. (a) Qα and μβ distributions in the Q model. (b) Qα and μβ distributions in the
institution Q model.
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Table 4. Prediction performance of the h-index.

Y2 Metrics Field Q model IQ model IQ-2 model IQ-3 model

Pearsonr CS
Physics

0.8337
0.8231

0.8951
0.8784

0.8952
0.8838

0.8218
0.8435

2003 R2 CS
Physics

0.6151
0.5630

0.6944
0.7574

0.7036
0.7697

0.5038
0.4104

RMSE CS
Physics

3.1605
3.4510

2.8164
2.5711

2.7735
2.5051

3.5886
4.0086

MAE CS
Physics

2.1862
2.2275

1.9213
1.6890

1.8945
1.6871

2.7586
3.0254

Pearsonr CS
Physics

0.6694
0.5787

0.7895
0.6960

0.7903
0.7236

0.6821
0.7127

2006 R2 CS
Physics

0.0218
0.0000

0.4053
0.4293

0.4274
0.4901

0.2901
0.1182

RMSE CS
Physics

6.0636
6.5197

4.7279
4.3717

4.6393
4.1323

5.1658
5.4343

MAE CS
Physics

4.5026
4.4842

3.1755
2.7353

3.1322
2.7219

4.1553
4.4398

Pearsonr CS
Physics

0.5833
0.4067

0.7318
0.5643

0.7330
0.5870

0.5897
0.6175

2009 R2 CS
Physics

0.0000
0.0000

0.2472
0.1418

0.2761
0.1888

0.2657
0.1379

RMSE CS
Physics

8.3517
9.2269

6.0781
6.1511

5.9603
5.9805

6.0028
6.1653

MAE CS
Physics

6.2949
6.5506

4.0600
3.8495

4.0163
3.8378

4.6755
4.8608

IQ: institution Q; CS: computer science; RMSE: root mean square error; MAE: mean absolute error.

Table 5. Prediction performance of Ctot

Y2 Metrics Field Q model IQ model IQ-2 model IQ-3 model

Pearsonr CS
Physics

0.8099
0.4120

0.8803
0.7203

0.8822
0.8526

0.8553
0.8035

2003 R2 CS
Physics

0.6359
0.0000

0.7612
0.4730

0.7624
0.7101

0.6717
0.6423

RMSE CS
Physics

443.8554
951.7609

359.4097
468.2211

358.5023
347.2690

421.4412
385.7627

MAE CS
Physics

135.0992
134.6501

116.7510
113.9692

115.9322
111.5963

147.9782
159.6420

Pearsonr CS
Physics

0.6746
0.2943

0.8241
0.5124

0.8301
0.7477

0.7916
0.6935

2006 R2 CS
Physics

0.4000
0.0000

0.6722
0.0752

0.6786
0.5164

0.5416
0.4753

RMSE CS
Physics

775.5136
1478.2727

573.1875
897.7273

567.6203
649.2014

677.8759
676.2072

MAE CS
Physics

282.2775
299.5449

232.7257
238.5675

229.3469
233.6282

295.0730
305.6894

Pearsonr CS
Physics

0.5555
0.2298

0.7823
0.4758

0.7887
0.6544

0.7350
0.4238

2009 R2 CS
Physics

0.1353
0.0000

0.6060
0.1073

0.6139
0.3706

0.4527
0.3826

RMSE CS
Physics

1193.1132
2068.2193

805.4156
1171.0453

797.3086
983.2364

949.2027
973.8251

MAE CS
Physics

426.3945
498.1137

341.2947
389.5458

337.1603
384.9858

432.3994
464.9858

IQ: institution Q; CS: computer science; RMSE: root mean square error; MAE: mean absolute error.
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Figure 4. The prediction performance of the h-index when Y2 ∈ ½2001,2010�.

Figure 3. The prediction results of the IQ-2 when Y2 = 2006:

Figure 5. The prediction performance of Ctot when Y2 ∈ ½2001,2010�.
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respectively. We find that the IQ-2 model nearly always scores highest on Pearsonr and R2, and scores lowest on RMSE

and MAE under different Y2. Overall, our models have more accurate prediction power than the Q model, which indir-

ectly shows that they quantify research ability in a more accurate manner. In addition, with the increase of Y2, the predic-

tion accuracy of all models gradually decreases, and this trend is especially obvious in the Q model.

Finally, we also randomly select four scientists (α1, α2, α3, and α4) as a case study to analyse our prediction results.

As shown in Figure 6, we plot the h-index and Ctot as a function of Y2. The grey line indicates the actual value, while

brown, red, blue and black lines indicate the predicted value of the Q, IQ, IQ-2 and IQ-3 models, respectively. We find

the blue line is closest to the grey line, followed by red and black lines. Thus, the IQ-2 model achieves the best predic-

tion accuracy, and IQ, IQ-2 and IQ-3 models achieve better prediction performance than the Q model on the empirical

data.

5.5. The prediction performance compared with common machine learning models

We compare our model with common machine learning models, which have been widely employed in predicting the sci-

entific impact [18,51,52]. Specifically, we select Support Vector Regression (SVR) and Random Forest Regression

(RFR) as representatives of traditional machine learning models, and Long Short Term Memory network (LSTM) and

Gated Recurrent Network (GRU) as representatives of deep learning models. For each empirical dataset, scientists are

split into the training set, verification set, and test set as a ratio of 8:1:1. We divide it 10 times and repeat the above

experiments to predict the h-index and Ctot. The input of SVR, RFR, GRU and LSTM is a time series with a length of

eleven (e.g. C1
tot,C2

tot, . . . ,C11
tot), and the output is a scalar (e.g. C12

tot), in which the academic environment information is

not included. The SVR and RFR are implemented based on the sklearn library, and the LSTM and GRU networks are

implemented based on the Tensorflow framework. As shown in Tables 6 and 7, we report the average prediction perfor-

mance on the test set. The bold text indicates the best result. We find that the IQ-2 model always achieves the best pre-

diction performance in forecasting Ctot, and achieves competitive performance in forecasting the h-index than SVR,

RFR, GRU and LSTM. Actually, one obvious advantage of machine learning models is that they can be seen as a ‘black

box’ and are easy to deploy and universally applicable. However, our graphical models focus more on explainable power

in scientific evaluation, and can quantify the hidden research ability.

6. Discussion

We present a series of practical guidelines for using the institution Q model, and summarise the theoretical and practical

implications of this study. First, C10
α, i takes a long time to be observed. Previous studies have shown that the majority of

papers acquire most citations within the first three years of publication [50], and citations acquired within three and five

Figure 6. Four case scientists in the prediction experiment.
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Table 6. Prediction performance of the h-index.

Y2 Metrics Field RFR SVR GRU LSTM IQ-2

Pearsonr CS
Physics

0.8542
0.8638

0.8650
0.8708

0.8696
0.8724

0.8695
0.8723

0.8936
0.8830

2003 R2 CS
Physics

0.7273
0.7451

0.7355
0.7471

0.7548
0.7603

0.7552
0.7600

0.7033
0.7692

RMSE CS
Physics

2.6256
2.6559

2.5859
2.6454

2.4895
2.5753

2.2874
2.5746

2.7363
2.5275

MAE CS
Physics

1.9584
1.8662

1.8119
1.7316

1.8653
1.8019

1.8464
1.8004

1.8742
1.6915

Pearsonr CS
Physics

0.7137
0.6532

0.7398
0.6775

0.7439
0.6775

0.7427
0.6785

0.7903
0.7199

2006 R2 CS
Physics

0.5010
0.4194

0.5254
0.4341

0.5507
0.4573

0.5488
0.4580

0.4281
0.4843

RMSE CS
Physics

4.3122
4.4191

4.2059
4.3633

4.0923
4.2733

4.1006
4.2698

4.6167
4.1640

MAE CS
Physics

3.2285
3.1328

2.9961
2.9061

3.0560
3.0058

3.0387
3.0158

3.1114
2.7429

Pearsonr CS
Physics

0.6136
0.4866

0.6493
0.5288

0.6500
0.5267

0.6496
0.5250

0.7317
0.5845

2009 R2 CS
Physics

0.3646
0.2214

0.3907
0.2424

0.4207
0.2751

0.4204
0.2749

0.2672
0.1839

RMSE CS
Physics

5.5602
5.8475

5.4464
5.7683

5.3097
5.6428

5.3112
5.6471

5.9688
5.9852

MAE CS
Physics

4.1747
4.2117

3.8862
3.8757

3.9567
4.0242

3.9797
4.0699

4.0319
3.8371

RFR: Random Forest Regression; SVR: Support Vector Regression; GRU: Gated Recurrent Network; LSTM: Long Short Term Memory network; IQ:

institution Q; CS: computer science; RMSE: root mean square error; MAE: mean absolute error.

Table 7. Prediction performance of Ctot.

Y2 Metrics Field RFR SVR GRU LSTM IQ-2

Pearsonr CS
Physics

0.8353
0.8291

0.8305
0.8044

0.8534
0.7994

0.8372
0.8021

0.8771
0.8361

2003 R2 CS
Physics

0.6923
0.6804

0.6552
0.6270

0.6620
0.6129

0.6675
0.6198

0.7533
0.6805

RMSE CS
Physics

403.2105
375.8929

427.4737
407.8437

422.9294
415.4518

418.7360
411.5571

360.0250
377.1841

MAE CS
Physics

152.1931
138.8131

145.8666
142.2504

148.0416
149.8415

149.0748
150.1761

115.3052
115.4793

Pearsonr CS
Physics

0.7422
0.7159

0.7378
0.6942

0.7512
0.6671

0.7506
0.6770

0.8358
0.7496

2006 R2 CS
Physics

0.5331
0.4896

0.5019
0.4292

0.5204
0.3996

0.5287
0.4115

0.6862
0.5128

RMSE CS
Physics

683.0272
665.4531

708.1028
706.0731

694.2919
724.5224

687.2806
717.5693

552.8815
653.2078

MAE CS
Physics

301.3233
294.1592

289.0176
293.7415

290.0828
303.2461

294.0581
301.5355

228.5504
236.9563

Pearsonr CS
Physics

0.6798
0.5793

0.6909
0.5528

0.6929
0.5373

0.6868
0.5451

0.7763
0.6390

2009 R2 CS
Physics

0.4397
0.3058

0.4181
0.2503

0.4276
0.2468

0.4122
0.2467

0.5930
0.3518

RMSE CS
Physics

954.7665
986.9753

972.8313
1026.9343

964.3413
1029.5145

977.2964
1029.1385

814.0659
955.7702

MAE CS
Physics

448.1728
470.7465

434.5136
468.3011

436.0893
480.6622

443.3566
482.8770

338.5184
381.5656

RFR: Random Forest Regression; SVR: Support Vector Regression; GRU: Gated Recurrent Network; LSTM: Long Short Term Memory network; IQ:

institution Q; CS: computer science; RMSE: root mean square error; MAE: mean absolute error.
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years are an important reflection of a paper’s quality [51–53]. Hence, C3
α, i and C5

α, i may be suitable choices to quantify

the quality of a publication in a timely manner, and are used in the institution Q model to evaluate a scientist’s research

ability and predict their scientific impact in time. In addition, the citations count standardised by the z-score strategy for

alleviating the time bias [54,55] is also a feasible alternative. In this article, to ensure the same experimental setup as uti-

lised in the Q model, we still choose C10
α, i. Second, the BBVI-EM algorithm belongs to a stochastic optimisation algo-

rithm, and therefore the initial value of the algorithm is very important. Practically, the Qα estimated by the Q model

tends to be a good initial value, which is also adopted in this study. In addition, a series of training techniques applicable

to the gradient descent algorithm (such as the learning rate decay, early stopping, data subsampling) can be utilised to

ensure better performance of the BBVI-EM algorithm.

This article has the following theoretical implications. First, we present a novel institution Q model (IQ) and its two

variants (IQ-2 and IQ-3), which integrate the academic environment (i.e. scientists’ institutions, countries and collabora-

tors) as valuable prior information, and jointly evaluate the research ability of scientists from different institutions.

Second, our models achieve excellent quantification performance of research ability and satisfactory prediction perfor-

mance of future scientific impact. Specifically, our models can more accurately estimate the hidden research ability of

scientists and institutions than the Q model and can more accurately predict the h-index and Ctot of scientists than com-

mon machine learning models. The IQ-2 model gets the optimal results. The simple idea of taking academic environment

as prior knowledge does not surprisingly improve the performance of our models. The potential reason is that our models

can flexibly use the information of other scientists from an institution to evaluate the research ability of a scientist from

the institution. Hence, our models can better cope with the data scarcity problem frequently encountered in scientific

research evaluation. Third, the idea behind our models broadens the thought for incorporating academic environment into

scientific evaluation. Other factors related to the academic environment, possibly affecting scientists’ research perfor-

mance, may also be utilised as priori information, and other researchers can draw lessons from our modelling methods.

Hence, this study makes a theoretical contribution to guide how to integrate academic environment into the evaluation of

scientific activities. Finally, we propose a generic BBVI-EM algorithm, which achieves excellent performance on our

issue.

The article also has the following practical implications. First, the excellent estimation performance and the satisfac-

tory prediction performance of our models suggest that they are not only effective evaluation tools to quantify the

research ability of scientists but also practical prediction tools to predict scientists’ scientific impact. Thus, funding agen-

cies may adopt our model to improve their talent assessment mechanism, evaluate and rank the research ability of scien-

tists, and target promising young scholars to stimulate scientific innovation [56]. Moreover, the BBVI-EM algorithm is a

general variational inference algorithm, which can also be used in the inference and estimation of other probabilistic gra-

phical models. The BBVI-EM algorithm inherits the merits of the BBVI algorithm and allows researchers to easily

explore a wide variety of models without suffering from the tedious derivation process of probabilistic graphical models.

7. Conclusion

In this study, we propose the institution Q model with an explainable generative process to comprehensively consider

the academic environment, research ability and randomness in the citation process, which can effectively quantify the

research ability of scientists and institutions. To approximate the posterior distribution in our models, we also present a

universal and effective BBVI-EM algorithm. We examine the quantification performance of research ability and predic-

tion performance of the scientific impact of our models on synthetic data and empirical data, which shows that our mod-

els are effective evaluation and prediction tools for scientific evaluation.

There are still some limitations in this study. Our models focus on using scientists’ institutions, countries and colla-

borators as prior information. However, there are many other factors which may be used as valuable information for

research evaluation, such as research topics, gender, and co-authorship network [14,28,57]. Hence, a more sophisticated

model including as much comprehensive prior information as possible needs to be explored. Moreover, previous studies

have shown that author name order, author contribution statement and contribution list represent the contribution of

authors to a publication [4]. Therefore, this information may be used to meticulously design wα, i in the IQ-3 model in

the future.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Huang et al. 15

Journal of Information Science, 2023, pp. 1–18 � The Author(s), DOI: 10.1177/01655515231191231



Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This

work was supported by the Youth Science Foundation of the National Natural Science Foundation of China (grant no. 72004168).

ORCID iDs

Shengzhi Huang https://orcid.org/0000-0002-7035-4627

Wei Lu https://orcid.org/0000-0002-0929-7416

Zhuoran Luo https://orcid.org/0000-0003-0677-8350

Supplemental material

Supplemental material for this article is available online.

Note

1. https://github.com/WannaLearning/Quantifying-scientists-research-ability-by-taking-institutions-scientific-impact-as-priori-

informa.git.

References

[1] Zhou Y, Wang R, Zeng A et al. Identifying prize-winning scientists by a competition-aware ranking. J Informetr 2020; 14:

101038.

[2] Meng Q and Kennedy PJ. Discovering influential authors in heterogeneous academic networks by a co-ranking method. In:

Proceedings of the 22nd ACM international conference on information & knowledge management, 2013, pp. 1029–1036,

https://dl.acm.org/doi/abs/10.1145/2505515.2505534

[3] Simoes N and Crespo N. A flexible approach for measuring author-level publishing performance. Scientometrics 2020; 122:

331–355.

[4] Yang S, Xiao A, Nie Y et al. Measuring coauthors’ credit in medicine field – based on author contribution statement and citation

context analysis. Inf Process Manag 2022; 59: 102924.

[5] Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 2005; 102: 16569–16572.

[6] Jiang J, Shi P, An B et al. Measuring the social influences of scientist groups based on multiple types of collaboration relations.

Inf Process Manag 2017; 53: 1–20.

[7] Liu X, Bollen J, Nelson ML et al. Co-authorship networks in the digital library research community. Inf Process Manag 2005;

41: 1462–1480.
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