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Abstract
Keeping track of translational research is essential to evaluating the performance of pro-
grams on translational medicine. Despite several indicators in previous studies, a consen-
sus measure is still needed to represent the translational features of biomedical research at 
the article level. In this study, we first trained semantic representations of biomedical enti-
ties and documents (i.e., bio-entity2vec and bio-doc2vec) based on over 30 million Pub-
Med articles. With these vectors, we then developed a new measure called Translational 
Progression (TP) for tracking biomedical articles along the translational continuum. We 
validated the effectiveness of TP from two perspectives (Clinical trial phase identification 
and ACH classification), which showed excellent consistency between TP and other indica-
tors. Meanwhile, TP has several advantages. First, it can track the degree of translation of 
biomedical research dynamically and in real-time. Second, it is straightforward to interpret 
and operationalize. Third, it doesn’t require labor-intensive MeSH labeling and it is suit-
able for big scholarly data as well as papers that are not indexed in PubMed. In addition, 
we examined the translational progressions of biomedical research from three dimensions 
(including overall distribution, time, and research topic), which revealed three significant 
findings. The proposed measure in this study could be used by policymakers to monitor 
biomedical research with high translational potential in real-time and make better deci-
sions. It can also be adopted and improved for other domains, such as physics or computer 
science, to assess the application value of scientific discoveries.

Keywords Translational Progression · Biomedical knowledge representation · Indicator · 
Bibliometrics · Research evaluation

Introduction

Despite the significant investment in biomedical research, translating laboratory discover-
ies from bench to bedside remains challenging (Matoori & Leroux, 2020). For example, 
in the magnificent Human Gene Project (HGP), less than 5% of the human-related genes 
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discovered have been clinically studied until 2019, and even fewer have been successfully 
applied to clinical practice (Lee et al., 2019). The term, “the Valley of Death”, has been 
used for describing a place where promising medical interventions in laboratories go fail to 
make their way into clinical studies and therefore never can be developed into treatments 
for patients (Linton & Xu, 2021). Therefore, translational research has recently received 
considerable attention from both academia and government worldwide, as exemplified by 
the National Center for Advancing Translational Sciences (NCATS) in the United States 
(Haynes et al., 2020). These programs are in progress and represent a significant invest-
ment, therefore it is vital to evaluate their effectiveness.

Previously, researchers have indirectly assessed translational programs from differ-
ent perspectives, such as the number of papers (Llewellyn et al., 2018), financial support 
(Knapke et al., 2015), and scientific impact (Scheneider et al., 2017). However, these stud-
ies failed to track where the research is located on the translational continuum, which can 
reflect the degree of translation of biomedical papers directly. To solve these issues, some 
researchers presented solutions at multiple levels, including the “research level” at the jour-
nal level (Boyack et al., 2014; Lewison & Paraje, 2004; Narin & Rozek, 1988; Narin et al., 
1976; Santangelo, 2017), the “triangle of biomedicine” (Weber, 2013) at MeSH level, 
the TS score (Kim et  al., 2020) and the translational potential (Hutchins et  al., 2019) at 
paper level. These studies emphasize the importance of tracking translational research for 
research evaluation and policymaking, as well as the challenges and feasibility of devel-
oping bibliometric measures for translational research. Nevertheless, these studies mainly 
relied on the labor-intensive MeSH terms labeling (Ke, 2020; Li & Tang, 2021) or the 
citation relationships between papers (Donner & Schmoch, 2020; Kim et al., 2020). Mean-
while, despite the existence of a series of indicators, there is still a need for a consensus 
measure that represents the translational aspect of biomedical research at the article level 
(Kim et al., 2020).

Nowadays, the continually increasing number of biomedical papers provides a great 
resource for big-data-driven knowledge discovery and research evaluation (Li et al., 2020; 
Yu et al., 2021). Big scholarly data analysis, which devotes to discovering patterns from a 
large scale of scientific data using the methods of artificial intelligence, has started to be 
used for tracking translational research. For example, Ke (2019) learned the vector space of 
MeSH terms using a deep learning method called LINE (Tang et al., 2015), to compute the 
basicness of PubMed papers published between 1980 and 2013. Hutchins et al. (2019) ana-
lyzed the paper’s “Translational Potential” which means the probability of whether a paper 
will be clinically cited, by machine learning models with MeSH-related and citation-related 
information (Accuracy = 0.56 and F1 score = 0.84). Li et al. (2022) used a multilayer per-
ceptron neural network with 91 features, including citation-related features, clinical trans-
lation-related features, and topic-related features to predict the “clinical impact” (i.e., the 
number of clinical citations) of biomedical papers. (MAE = 0.5132 and  R2 = 0.7883).

Inspired by previous studies, we here develop a novel indicator, i.e., the Translational 
Progression (TP), to track translational research along the translational continuum from the 
massive biomedical papers in real-time, based on biomedical knowledge representation. 
Specifically, we trained semantic representations of biomedical entities (such as disease, 
drug, and gene) and biomedical documents (titles + abstracts) with the fasttext (Ait Ham-
mou et  al., 2020) and the doc2vec (Le & Mikolov, 2014), respectively. Titles, abstracts 
and MeSH terms of over 30 million PubMed articles are used as the training data. For a 
specific biomedical paper, its TP is defined as its relative position on the translational con-
tinuum of biomedicine, which can be imagined as a translational axis from basic science 
to clinical science (Ke et al., 2019; Li et al., 2017; Weber, 2013; Li, 2021). The value of 
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translational progression can quantify the degree of translation of biomedical research at 
the article level, and the higher the value of TP, the closer the research is to clinical science 
(which indicates a higher degree of translation). The proposed measure in this paper has 
several advantages: it can capture the degree of translation of biomedical research dynami-
cally and in real-time; it is straightforward to interpret and operationalize; it doesn’t require 
labor-intensive MeSH labeling and it is suitable for big scholarly data as well as the papers 
that are not indexed in the PubMed; it can be used independently or in conjunction with 
other measures for tracing translational research and research evaluation; and it can also 
be adopted and improved for other domains, such as physics or computer science, to assess 
the application value of scientific discoveries.

Related work

Tracking translational research contributes to evaluating the performance of biomedi-
cal research programs, to ensure better policy-making and scientific resource allocation. 
Research related to tracking translational research can be categorized into two aspects: (1) 
The classification of research levels for biomedical research; and (2) The identification of 
translational research using citation analysis.

The classification of research levels for biomedical research

In the first study on the classification of research levels, Narin et al. (1976) manually clas-
sified more than 900 biomedical journals into two categories, that is, “basic research” and 
“clinical research”, according to the nature and content of the journal. These two categories 
were further expanded into four categories by Narin et al. (1988), including “clinical obser-
vation” (Level 1), “clinical mix” (Level 2), “clinical investigation” (Level 3), and “basic 
research” (Level 4). Then, the papers published in journals of level 1 and level 2 tend to be 
more focused on clinical practice, while those in journals of the other two categories tend 
to be more oriented toward basic research. Using clue words in papers’ titles and abstracts, 
Lewison and Paraje (2004) classified papers into Narin’s four research levels. This method 
provided a way to classify large-scale papers at different research levels, although its accu-
racy was far from perfect. Nevertheless, Lewison and Paraje (2004) remained focused on 
their original objective of categorizing biomedical journals into different research levels.

Different from Lewison and Paraje (2004), Weber (2013) proposed a biomedical tri-
angle for identifying translational research based on the MeSH terms. He categorized the 
MeSH terms into three categories, i.e., animal-related (A), cell/molecular-related (C), and 
human-related (H), which made up the three vertices of the triangle. Then, biomedical 
papers were mapped onto the vertex (A, C, H), the midpoint of edges (AC, CH, and AH), 
and the center of the triangle (ACH), based on the MeSH terms assigned, respectively. 
Also, Weber thought of translation as the movement of knowledge discovered in basic 
research toward clinical research or practice and visualized it as a “translational axis” in the 
triangle (Weber, 2013). The research closer to the H corner is more orientated towards clin-
ical research, while the ones closer to the A or the C corners are more orientated towards 
basic research. Weber (2013) first focused on the article level in this field. However, his 
method can categorize papers into only seven categories, and the papers in the same cat-
egory can’t be distinguished by their degree of translation. Besides, this method relies on 
the MeSH terms assigned manually.
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Hutchins et al. (2019) found that the degree of translation of papers was not only related 
to the categories of the MeSH terms assigned, but also related to the number and propor-
tion of different categories of MeSH terms. To solve this issue, they improved the biomedi-
cal triangle by fractional counting. Specifically, in the fractional triangle of biomedicine, 
papers can be mapped anywhere in the triangle, not limited to seven points. On the other 
hand, Ke (2019) proposed a scientometric indicator called “Appliedness”, to quantify the 
degree of translation of a biomedical study at the article level. Methodologically, Ke (2019) 
used a network representation algorithm called LINE to learn the vectors of MeSH based 
on the co-occurrence of MeSH terms in PubMed; and then the vectors were employed to 
compute the “Appliedness” of each MeSH term; finally, for a paper, its “Appliedness” is 
the average value of the MeSH terms assigned to it.

To a certain extent, the methods of Hutchins et al. (2019) and Ke (2019) have improved 
the accuracy and granularity of identifying translational research. However, limitations 
remain: these methods heavily rely on the MeSH terms, which are labor-intensive and sub-
jective, and they can’t fit papers that are not indexed in PubMed. Meanwhile, these meth-
ods considered only the appearance or the co-occurrence of the MeSH terms but ignored 
much other information about the research, such as the context of the MeSH terms, the 
biomedical entities (disease, drug, gene, etc.) mentioned in the texts, or the citation rela-
tionships recorded in the references.

The identification of translational research using citation analysis

The effective knowledge flow from basic to clinical is the basis for the success of trans-
lational research (Du et  al., 2019; Li, 2022). In bibliometrics, the process of knowledge 
flow can be quantified by the movement of knowledge from cited papers to citing papers. 
Therefore, it is feasible to identify translational research using citation analysis, which is a 
classical method in bibliometrics and has been successfully used in biomedicine, such as 
drug repurposing (Li et al., 2020), biomedical entitymetrics (Ding et al., 2013) and health 
equity (Yao et al., 2019).

The initial focus of the related studies in this aspect is also not a biomedical paper, 
but a specific research field or product. For example, Contopoulos-Ioannidis et al. (2008) 
defined the “translational lag” of medical intervention as the time interval from the first 
related publication to the first clinically highly cited paper. The analysis of 101 promis-
ing medical interventions indicated that the average translational lag is about 24  years. 
Jones et  al. (2011) analyzed the “translational area” of cancer research using semantic 
network and citation analysis; they found this field had its paradigm and characteristics, 
which were different from “Cancer Biology” and “Clinical Oncology”. Weber (2013) 
also quantified the degree of translation of biomedical fields by using citations between 
paper sets with different categories. Hutchins et al. (2019) used citation analysis to study 
the translational potential of a biomedical paper. For a specific paper, they defined its 
“translational potential” as its possibility of being cited by clinical papers, such as clinical 
guidelines or clinical trials. Methodologically, they considered the translation of a paper 
from bench to bedside as a binary classification problem and trained a random forest clas-
sifier with 21 features. However, most of these features were only MeSH-related informa-
tion extracted from biomedical papers. The F1 score and accuracy of their experiment 
were respectively 0.56 and 0.84. Li et al. (2022) designed a multilayer perceptron neural 
network model with 91 features from three different dimensions (i.e., paper dimension, 
reference dimension, and citing paper dimension), to predict the clinical citation count of 
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biomedical papers in the future. Features in each dimension can be classified into three 
categories, including citation-related, clinical translation-related as well as topic-related; 
the authors concluded that the features in the reference dimension are the most important 
for the task. X. Li also tested the above 91 features on the same task as Hutchins et al. 
(2019) and achieved significant improvements with F1 score = 0.8417, accuracy = 0.8577, 
and AUC-ROC = 0.9205.

The methods based on citation analysis are the continuation and development of the 
research on the classification of research levels, they thus have the same limitations men-
tioned above. Besides, the association or citation relationships between biomedical papers 
and patents have also been employed in several related studies. For example, Morris et al. 
(2011) used the association between drug patents and academic literature to quantify the 
translational lags of drug development. Du et  al. (2019) proposed a drug-patent-paper-
funding link analysis method, to measure the knowledge flow in drug research. Ke (2020) 
also systematically analyzed the distribution of citations from over 5 million biomedical 
papers, and the results showed that the number of citations received by clinical research 
was much less than that of basic research.

Methodology

To quantify how translational a biomedical paper is, we propose a new bibliometric 
measure based on the translational axis in the Triangle of Biomedicine (Weber, 2013). 
Weber defined translation as the movement of knowledge discovered in basic research 
towards clinical research, which is visualized as the red arrow in the Triangle of Bio-
medicine (Fig. 1a). Similar to Ke’s “Appliedness” (Ke, 2019), we are learning vectors 
to represent the translational axis in biomedicine and the contents of biomedical papers, 
and placing paper vector onto the translational continuum (or translational axis) from 
bench to bedside, to quantify the degree of translation of a biomedical paper (Fig. 1b). 
However, rather than MeSH terms or the co-occurrence relationships between MeSH 
terms, we use the bio-entities (including diseases, drugs/chemicals, genes/proteins, 

Fig. 1  The translational progression of a biomedical article. [a: The Translational Axis (in red) in the Trian-
gle of Biomedicine. b: How to place a paper onto the translational axis.]
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mutations, and species) mentioned in biomedical texts and the paragraphs. On one hand, 
the types and semantics of bio-entities embedded in biomedical literature allow us to 
capture the knowledge related to basic or clinical science. On the other hand, at the doc-
ument level, paragraphs provide us with more information such as contexts and struc-
ture, to quantify and represent the content of research papers and the translational axis. 
Meanwhile, this measure can fit papers that are not indexed in PubMed, as it doesn’t 
rely on MeSH terms. With open access to big scholarly data and the development of 
natural language processing techniques, this approach enables a stable indicator that 
reflects the translational features of an article in terms of its value to clinical practice, 
which is useful for scientific prediction and research evaluation (Hutchins et al., 2019; 
Kim et al, 2020).

Specifically, to calculate the translational progressions for biomedical papers, we 
propose a three-step research framework, as shown in Fig. 2: (1) data collection and pre-
processing; (2) calculating translational progressions of biomedical papers; (3) valida-
tion and pattern analysis. The details of each step are described below.

Fig. 2  The overall process of the proposed research framework. (MeSH Medical Subject Headings, TPE 
Translational Progression Based on Entity Embeddings, TPD Translational Progression Based on Docu-
ment Embeddings, Bio-entity2vec Biomedical Entity Embeddings, Bio-doc2vec Biomedical Document 
Embeddings, TA2vec Translational Axis Vector, Paper2vec Paper Vector)
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Step 1: data collection and pre‑processing

The data used in this study was mainly collected from PubMed. We downloaded the 
PubMed 2020 Baseline in XML files from its website.1 The total number of papers was 
30,477,134. For each paper, we first extracted its title, abstract, PMID, paper type (such 
as journal article, clinical trial, clinical guideline), and MeSH terms using a dom4j-based 
XML parser written in Java. Note that the version of MeSH we used in this study was 
MeSH 2020. To obtain the tree numbers of MeSH terms, we downloaded the XML file 
“desc2020.xml” and the bin file “mtrees2020.bin” from its official website.2 The biblio-
graphic information was then stored in a local MySQL database for further analysis.

We used BioBERT (Lee et al., 2020) to extract biomedical entities from the PubMed 
titles and abstracts, including diseases, drugs/chemicals, genes/proteins, mutations, and 
species. BioBERT has been considered the state-of-art for the recognition of biomedi-
cal entities, and it has been successfully employed for multiple biomedical tasks, such as 
knowledge graph building and text mining (Xu et al., 2020). With transformers and self-
attention, BioBERT has advantages over the previous methods that are based on rules, con-
ditional random fields (CRFs), or long short-term memory (LSTM), such as the PKDE4J 
(Song et al., 2015), the PubTator (Wei et al., 2019) and the ezTag (Kwon et al., 2018). We 
downloaded the BioBERT from GitHub3 and trained it with PubMed and PubMed Cen-
tral for obtaining the pre-trained weights, which then were fine-tuned for biomedical entity 
recognition. The accuracy and F1 score of our model of biomedical entity recognition 
were 0.9071 and 0.8913. Meanwhile, it is necessary to normalize the name of biomedical 
entities because a single biomedical entity can have multiple synonyms in the corpus. For 
example, the drug aspirin has more than 30 variants in PubMed articles, such as “aspirin”, 
“acetylsalicylic acid”, “Ecotrin”, and “Esplin” (Li et al., 2020). In this study, we employed 
a probability-based model proposed by Donghyeon Kim et al., (2019a, 2019b) to normalize 
overlapping bio-entities. In this multi-type normalization model, datasets or tools including 
RxNorm (Bodenreider et  al., 2018), tmChem (Leaman et  al., 2015), GNormPlus (Kwon 
et al., 2018), DrugBank (Wishart et al., 2018), and tmVar2.0 (Kaushik et al., 2021) were 
integrated as a decision tree pipeline for bio-entity normalization. The statistical infor-
mation about the biomedical entities extracted from PubMed was displayed in Table  1. 
Finally, a bio-entity with multiple synonyms was assigned to a unique ID, according to 
which we unified the entity form in PubMed titles and abstracts for the accuracy of entity 
embeddings.

Table 1  The statistical information about the biomedical entities was extracted from the PubMed 2020 
Baseline

Genes/proteins Diseases Drugs/chemical Species Mutations

# of entities extracted 91,213,528 98,877,893 85,467,211 69,847,523 1,485,737
# of papers 8,324,329 15,358,726 11,681,294 15,765,389 407,533
# of entities after normalization 27,317 32,954 138,275 112,203 208,474

1 https:// pubmed. ncbi. nlm. nih. gov/
2 https:// www. nlm. nih. gov/ datab ases/ downl oad/ mesh. html
3 https:// github. com/ dmis- lab/ biobe rt

https://pubmed.ncbi.nlm.nih.gov/
https://www.nlm.nih.gov/databases/download/mesh.html
https://github.com/dmis-lab/biobert
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In addition, for training the entity and document embeddings, we used an NLP tool 
called spaCy4 to pre-process the titles and abstracts, such as tokenization, removing stop 
words, and punctuation. Finally, our dataset has more than 30 million articles with over 
519 thousand unique bio-entities and 29,638 unique MeSH terms.

Step 2: computing translational progression for Biomedical papers

Here we propose a new indicator called Translational Progression (TP) to quantify the 
degree of translation of a biomedical paper, based on the biomedical triangle (Weber, 
2013). Specifically, we treat translation from bench to bedside as the movement of knowl-
edge discovered in basic research towards clinical research or practice, which can be visu-
alized by the red arrows (i.e., translational axis) in Fig. 1a, b. Then we can quantify the 
degree of translation of a biomedical paper (Translational Progression, TP) by using the 
relative position of a biomedical paper onto the translational axis, which can be calculated 
by the cosine similarity, as shown in Fig. 1b. Thus, the key point of the overall process is to 
make the content of the paper and the translational axis computable.

First, we use entity2vec to compute the TPE (translational progression at the entity 
level) of biomedical papers. Specifically, this step is designed to be executed in four sub-
steps: training the biomedical entity embeddings (bio-entity2vec), translational axis vec-
torization (TA2vec), biomedical paper vectorization (bio-paper2vec), and computing the 
translational progression of biomedical papers at the entity level (TPE).

(1) Bio-entity2vec We used fastText (Ait Hammou et al., 2020) to train the biomedical 
entity embeddings, based on the cleaned titles, abstracts, and MeSH terms of more 
than 30 million PubMed articles. FastText was a library for word2vec training devel-
oped by the NLP team on Facebook and has been successfully used for academia and 
industry. We chose fastText because of its advantages over the original word2vec: (a) 
It is more efficient and more suitable for large corpus. It costs less than 10 min for it 
to process more than 1 billion terms. (b) It can well process the never-appeared words 
with a sub-word embedding method. Specifically, we downloaded the whole fastText 
from GitHub5 and selected the command line mode to train entity2vec. There was a 
total of 4,897,639,771 non-repeating terms in the training data. The training model, 
the learning rate, the dimensions of the entity vector, the length of the minimum sub-
word, and the number of threads of our experiment were CBOW, 0.0001, 200, 3, and 
12, respectively. The trained entity2vec model was finally saved as a binary file and 
can be loaded for the next analysis.

(2) TA2vec at the entity level At the entity level, we define the translational axis in bio-
medicine as the vector from the center of basic MeSH terms (Animal-related and cell/
molecular-related) to the center of clinical MeSH terms (Human-related). As shown in 
Appendix 1, there are a total of 6104 basic MeSH terms (including 2479 animal-related 
and 3625 cell/molecular-related MeSH terms) and 332 clinical MeSH terms. If we use 
Mbasic =

[

MB1,MB2,… ,MB6104

]

 and Mclinical =
[

MC1,MC2,… ,MC332

]

 to represent 
the set of basic and clinical MeSH terms, then the center vectors of basic and clinical 
MeSH terms, i.e., ����⃗Gb and ���⃗Gc , is calculated by:

5 https:// github. com/ faceb ookre search/ fastT ext

4 https:// spacy. io

https://github.com/facebookresearch/fastText
https://spacy.io
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where “ �⃗a ” represents the entity vector of the term “a”; k and l are both positive inte-
gers. Also, we can know that ����⃗Gb and ���⃗Gc are both 200-dimensional vectors. Therefore, 
the translational axis vector at the entity level, ��������⃗BTAe , is given by:

where ��������⃗BTAe is also a 200-dimensional vector. The visualization of basic and clini-
cal MeSH terms using entity2vec and t-SNE is shown in Fig. 3, in which the purple 
arrow represents the translational axis at the entity level.

(3) Bio-paper2vec at the entity level For each paper, we here use the sum of vectors of 
unique biomedical entities mentioned in the paper, to vectorize its content. Assuming 
n unique biomedical entities are mentioned in the paper P, which can be denoted as 
[

ent1, ent2,… , entn
](

ent1 ≠ ent2 ≠ ⋯ ≠ entn
)

 . Then the paper vector, �⃗P , is calculated 
by:

(1)����⃗Gb =

∑6104

k=1
�������⃗MBk

6104

(2)���⃗Gc =

∑332

l=1
������⃗MCl

332

(3)��������⃗BTAe =
���⃗Gc −

����⃗Gb

(4)P⃗ =
∑n

m=1
������⃗entm

Fig. 3  Visualization of basic and clinical MeSH terms using entity2vec and t-SNE, in which the black 
crosses respectively represent the center of the two categories of MeSH terms; and the purple arrow repre-
sents the translational axis at the entity level
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where ������⃗entm means the vector of biomedical entities mentioned in the paper P; m is a 
positive integer; and �⃗P is also a 200-dimensional vector.

(4) TPE computing at the entity level As shown in Fig. 1b, for a paper P, we use the cosine 
projection of the paper vector onto the translational axis vector, to quantify its transla-
tional progression of it. That is, the translational progression of the paper at the entity 
level, TPEP , is given by:

where the value range of TPEP is [− 1, 1], according to the cosine similarity formula. 
If the value of TPEP is closer to 1, the paper will be more orientated towards clinical 
research or practice; otherwise, the paper will be nearer to basic research.

Similarly, we can then calculate the translational progression of biomedical papers at 
the document level by using doc2vec. The details can be found in Appendix 2.

Step 3: validation and result analysis

IN this step, we validate the effectiveness of our proposed methods in calculating transla-
tional progressions of biomedical papers, from two different perspectives: (1) Clinical trial 
phase identification; and (2) ACH classification. The details of validations can be found in 
the next section.

Meanwhile, to further understand the translational status of biomedical research, we 
explore the translational progressions of biomedical papers from three dimensions: overall, 
time, and research topic. Specifically, at the overall dimension, we observed the distribu-
tion patterns of translational progressions of more than 30 million PubMed articles by plot-
ting the density function curves. We also examined the distribution of translational pro-
gressions at two different levels (i.e., entity and document) using the heatmap of PubMed 
articles. In the time dimension, we explored how the translational progressions of PubMed 
articles changed during the period 1900–2020. Finally, in terms of research topic dimen-
sion, we compared the change patterns of translational progressions of research over time 
among 9 different research topics, such as Alzheimer’s disease, breast cancer, and gene 
editing.

Validation

IN this study, the validations of the effectiveness of our proposed method for measuring the 
degree of translation of biomedical papers are executed from two perspectives: (1) clinical 
trial phase identification and (2) ACH classification.

Clinical trial phase identification

From the perspective of clinical trial phase identification, we validated our method based 
on particular categories of biomedical papers in PubMed, i.e., papers flagged as “Clini-
cal Trials, Phase I”, “Clinical Trials, Phase II”, “Clinical Trials, Phase III” and “Clinical 

(5)TPE =
�⃗P ⋅

��������⃗BTAe

∥ P⃗ ∥ × ∥ ��������⃗BTAe ∥
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Trials, Phase IV”. These papers reported systematic studies on the validations and evalua-
tions of the safety and effectiveness of medical interventions on humans, and thus their pro-
gressions on the translational axis are expected to be more orientated to clinical research or 
practice (Decullier et al., 2021). That is to say, the average value of the TPs of these papers 
should be greater than 0 (i.e., TP > 0). Moreover, the average values of TPs of papers at dif-
ferent phases should be met by the following rules: Phase I < Phase II < Phase III < Phase 
IV.

Figure 4 shows the distributions of translational progressions (TPs) of clinical papers, 
from which we find that, at both the entity level and document level, the vast majority 
of clinical trial papers have TP > 0, with average values of 0.23 (TPE) and 0.38 (TPD), 
respectively. At the same time, Fig. 4 also displays the average values of TPs of clinical 
trial papers at different phases, illustrating that these four types of studies are closer to 
clinical research phase by phase, with their average values significantly growing.

ACH classification

From the perspective of ACH classification, we compared the effectiveness of our proposed 
method on the task of biomedical paper classification with the previous related studies. 
Specifically, based on the MeSH terms assigned to papers, Weber (2013) originally pro-
posed a theory of the biomedical triangle, in which the biomedical papers were classified 
into 7 categories (A, C, H, AC, AH, CH, and ACH), according to whether the paper con-
tains animal-related (A) or cell/molecular-related (C) or human-related (H) MeSH terms or 
their combinations. Further, the research levels of each category of biomedical papers were 
quantified by the average of the research levels of biomedical journals, in which they were 
published (Narin et al., 1976). As shown in Table 1, the results of Weber’s study indicated 

Fig. 4  The histogram of translation progressions (TPs) of clinical trial papers in four phases, in which the 
purple vertical line means the average value of the paper set. Note that the left and right figures respectively 
show the distributions of TPs of papers at entity and document levels, i.e., TPEs and TPDs
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that C and CA papers with larger research levels were more related to basic research, H 
papers were most orientated to clinical research, and other categories of papers in between. 
Similarly, Ke (2019) designed an indicator called “Appliedness” to measure the degree of 
basicness of the 7 categories of papers published between 1980 and 2013, by using the 
average level scores of MeSH terms whose values ranged from − 1 to 1. Table 1 displays 
the results of Ke’s research, which was consistent with Weber’s.

The last four columns of Table 2 show the average values of TPs of each category of 
papers at entity and document levels. They demonstrate that our results at both levels are 
consistent with the results of Ke (2019) and Weber (2013), i.e., we have the same order 
of these 7 categories of papers on the translational axis as they did. Specifically, papers 
assigned cell/molecular or animal-related MeSH terms with minor TPs (TPEC = −  0.24, 
TPECA = − 0.27, TPDC = − 0.21, and TPDCA = − 0.18) are more orientated to basic science, 
while the papers having only human-related MeSH terms with larger TPs are more clinical 
(TPEH = 0.24, and TPDH = 0.40).

Based on the above validations and related studies, we conclude that our proposed 
method is of good reliability and consistency. In the next sections, we will present the 
results of the translational progressions (TPs) of biomedical papers from three different 
dimensions, i.e., overall, time, and research topic.

Understanding the translational progressions of biomedical papers

Distribution of the translational progressions

The overall distributions of the translational progressions (TPs) of over 30 million bio-
medical papers in PubMed 2020 Baseline at the entity and document levels are displayed 
in Fig. 5, in which the red lines plot the density function curves, the purple lines flag the 
average values of TPs of all papers at two levels, and the total area of blue shade under 
the density function curve is 1. We can observe that the density distributions of TPs of 
biomedical papers have two peaks at both levels, and the density of the right peak is much 
higher than the left one. According to the average values of TPs of the 7 categories of 
papers (Table. 1), we can find that the left peaks (TPE = − 0.25 and TPD = − 0.23) point to 
the C and CA papers, accounting for about 17.7% of all the PubMed papers; and the right 
ones (TPE = 0.24 and TPD = 0.40) point to the H papers, making up about 48.1% of all the 

Table 2  Comparison between our results and previous studies on ACH classification

Weber (2013) Ke (2019) Bio-entity2vec-based Bio-doc2vec-based

Category Research level Category Appliedness Category TPE Category TPD

C 3.78 CA − 0.19 CA − 0.27 C − 0.21
CA 3.68 C − 0.15 C − 0.24 CA − 0.18
CAH 3.40 CAH − 0.10 CAH − 0.19 CAH − 0.10
A 3.15 A − 0.06 A − 0.12 A − 0.02
CH 2.85 CH 0.10 CH 0.15 CH 0.23
AH 2.10 AH 0.14 AH 0.17 AH 0.28
H 1.59 H 0.48 H 0.24 H 0.40
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PubMed papers. This indicates that basic research and clinical research constitute the two 
polarities of biomedical research, while the density of translational research (the depres-
sion between them) is much less.

Besides, we also find that there is an obvious difference between the distributions of 
TPEs (the figure above) and TPDs (the figure below) of biomedical papers from Fig. 5. For 
example, the range of TPEs is much wider than that of TPDs, while the distance between 
the left and right peaks of TPDs is larger than that of TPEs. This interesting observation 

Fig. 5  The overall distributions of the translational progressions (TPs) of biomedical papers at the entity 
and document levels

Fig. 6  The heatmap of TPE-TPD pairs
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raises a question about the relationships between the TPEs and TPDs of biomedical papers. 
To answer this question, we further plot the heatmap of the TPE-TPD pairs, as shown in 
Fig. 6.

In Fig. 6, a particular TPE-TPD pair is represented by a hexagon, the color of which 
reflects the number of this particular pair in all the PubMed papers. The yellower and 
brighter the color, the greater the number of the TPE-TPD pair; the darker and purpler the 
color, the fewer the number of the TPE-TPD pair. From Fig. 6, we can find that there is a 
significant positive relationship between the TPEs and TPDs of biomedical papers (Pearson 
coefficient = 0.893, P value = 0.000; and Spearman coefficient = 0.942, P value = 0.000). 
Generally, for a specific biomedical paper, the larger the value of TPE, the larger the value 
of TPD. This illustrates that our two proposed methods have good reliability and consist-
ency. In addition, in most cases, for a particular biomedical paper, the value of its TPD is 
larger than that of its TPE, especially for TPE > 0.2.

Changes in translational progressions over time

Figure 7 displays the changes in translational progressions (TPs) of biomedical papers over 
time. The trend and fluctuation of TPs over time can be reflected by the changes in the 
average value of TPs (in blue lines) and the changes in the one standard deviation of TPs 
(in light blue shades). From Fig. 7, we can make several interesting findings. First, between 
1940 and 1950, there was a sharp increase in the average value of TP of biomedical papers 
at both entity and document levels. This indicates that biomedical research had taken a 
big step toward clinical research and practice, which may be caused by the stimulation of 
the Second World War. Meanwhile, we can observe that, before 1940, the overall TPs of 
biomedical papers had not changed much at both levels, with a slight decrease. After 1950, 
the average values of TPs of biomedical papers have also been steady. However, there was 
an obvious increase in the standard deviations of TPs at both levels, with the shades getting 
wider over time. This indicates that both clinical research and basic research have made 
considerable progress during this period.

Similar patterns in translational progressions of biomedical papers can be also observed 
in Fig. 8, in which a hexagon means a TP-Year pair and the color reflects the frequency 
of the pair in all the PubMed articles. The color yellower and brighter, the greater the 
frequency of the TP-Year pair; the color blacker and purpler, the fewer the frequency of 
the TP-Year pair. Specifically, before 1940, the number of biomedical papers was much 
less and the color of the heatmap was mainly purple then, indicating the lower TPs of 

Fig. 7  Changes in translational 
progressions (TPs) of biomedical 
papers at entity and document 
levels over time
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biomedical papers. A similar surge of TPs can be also observed in Fig. 8, which is reflected 
by the jump of colors in the heatmaps. Since 1950, the range of TPs has been gradually 
growing wider, with the color getting brighter and yellower. The minimum of TPs was 
getting smaller and the maximum of TPs was getting bigger, illustrating the rapid develop-
ment of both clinical research and basic research during this period. Between 2015 and 
2020, the TPEs and TPDs of biomedical papers have reached [− 0.8, 0.75] and [− 0.8, 0.7], 
respectively.

Translational progressions of biomedical papers with different research topics

In the dimension of research topic, we choose 9 biomedical topics as research cases, 
including Alzheimer’s disease, breast cancer, gene editing, stem cell, brown fat, coronavi-
rus, HIV, HIV vaccine, and HPV vaccine. We collected all the related papers on each topic 
from PubMed using the search strategies listed in Appendix 3. The date of the literature 
search is March 2, 2020. Detailed information about the 9 topics, including the number of 
publications, publication year, and the average value of translational progressions at the 
entity and document levels, is shown in Table 3.

The total number of stem cell-related papers (442,522) reaches the first place, followed 
by breast cancer-related papers (418,348), and the HPV vaccine has the least number of 

Fig. 8  Heatmap of translational progressions (TPs) of biomedical papers over publication years

Table 3  The detailed information about the 9 topics

No Topic name Number of 
publications

Publication year Average of TPEs Average of TPDs

1 Alzheimer’s Disease 161,778 1913–2020 0.13 0.19
2 Breast cancer 418,348 1789–2020 0.19 0.29
3 Gene editing 16,123 1977–2020 − 0.16 − 0.05
4 Stem cell 442,522 1911–2020 − 0.04 0.06
5 Brown fat 16,024 1922–2020 − 0.07 − 0.14
6 Coronavirus 56,382 1949–2020 − 0.02 − 0.01
7 HIV 368,897 1954–2020 0.18 0.32
8 HIV vaccine 17,355 1967–2020 0.03 0.19
9 HPV vaccine 10,734 1962–2020 0.16 0.35
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related papers (10,734). As for the publication year, the research of breast cancer has the 
longest history with the earliest related paper published in 1789, while the research of gene 
editing is a relatively new topic in biomedicine with only a history of 43 years. We also 
counted the changes in the number of related papers on each topic over time, which can 
be seen in Appendix  4. On the whole, the number of related papers on all 9 topics has 
shown a clear growth over time. For example, despite a small decline in the 1960s, the 
number of Alzheimer’s disease-related papers has maintained rapid growth; and in 2019, 
the annual number of Alzheimer’s disease-related papers exceeded 10,000. It is worth not-
ing that the number of coronavirus-related papers peaked twice after the year 2000, which 
may be caused by the outbreak of atypical pneumonia (SARS) in 2003 and the Middle East 
Respiratory Syndrome (MERS) in 2012, respectively. In particular, a sharp increase in the 
number of coronavirus-related papers in 2020 points to the world pandemic of CoVID-19.

Table  3 also lists the average values of translational progressions (TPs) at entity and 
document levels of all 9 topics, from which we find that the average values of TPs of breast 
cancer research, HIV, and HPV vaccine rank in the top three. This means that the research 
on these three topics is more orientated to clinical research. While the average values of 
TPs of the research of gene editing, stem cell, brown fat, and coronavirus rank at the bot-
tom, indicating that the research on these topics is closer to basic research. These phenom-
ena illustrate that the translational progression of a research topic may be related to two 
factors. First is the nature of the research topic. Breast cancer and HIV are human diseases 
and most of their related papers are based on actual clinical cases. That is, the research 
level of these topics is human-related, and their discoveries are often directly applied to the 
treatment of human diseases. Therefore, the average TPs of these topics are higher. On the 
contrary, topics like gene editing and brown fat are more about laboratory technologies at 
cell or molecular levels, which are more orientated towards basic research. Second is the 
clinical application of the research results. For example, the average values of TPs of the 
HIV vaccine and HPV vaccine are quite different because none of the HIV vaccines under 
research has been successfully used for humans so far, while the HPV vaccine has been 
successfully approved and applied for the prevention of human diseases such as cervical 
cancer.

Further, from the dimension of time, we plot the changes in the translational progres-
sions at the entity level (TPEs) of biomedical papers in all 9 topics, as shown in Fig. 9. The 
blue lines represent the average values of the TPEs of biomedical papers, and the light blue 
shades represent the standard deviations of the TPEs of biomedical papers. According to 
the changes over time in the blue lines and shades, we can classify these 9 topics into three 
categories:

Category 1 At first, the average value of the TPs of the related papers was orientated 
towards clinical research (TPE ≥ 0.24), and then they showed a download trend over 
time. Alzheimer’s disease and breast cancer fall into this category. Alzheimer’s disease 
and breast cancer were first discovered as human diseases; thus, the translational pro-
gressions of their related papers were more clinical. With the advancement of biomedi-
cine, the research of both diseases became more molecular and genetic, which are closer 
to basic research with lower values of translational progressions.
Category 2 In the beginning, the average value of the TPs of the related papers 
was orientated towards basic research (TPE < 0), and then they kept increasing over 
time. Gene editing, stem cell, brown fat, coronavirus, and HPV vaccine are typical 
examples of this category. On one hand, the nature of these research topics is closer 
to biomedical research at the cell, molecular or microbial level. For example, gene 
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editing is a medical technology at the molecular level, stem cell is kind of regen-
erative cells, and HPV and coronavirus are microorganisms. That’s why the TPs of 
these research are lower at first. On the other hand, the TPs of them has been con-
tinuously increasing as the achievements made in these fields have been gradually 
applied to clinical practice, such as gene editing for the treatment of genetic dis-
eases, stem cells for the treatment of leukemia, and HPV vaccine for the prevention 
of cervical cancer.
Category 3 The TPs of the related papers have not changed much over time, such as 
HIV and HIV vaccines. Although much attention has been paid to the research of HIV 
and HIV vaccines, there are no great breakthroughs in the treatment and prevention of 
AIDS.

The changes in the translational progressions at the document level (TPDs) of bio-
medical papers in all 9 topics can be found in Appendix 5, from which we can see that 
the trend of the TPDs of biomedical papers in all 9 topics over time is consistent of that 
of TPEs.

Fig. 9  Changes in the translational progressions at the entity level (TPEs) of biomedical papers in different 
topics over time



1312 Scientometrics (2023) 128:1295–1319

1 3

Discussion and conclusion

In this study, we first propose a new indicator called “Translational Progression” 
(TP) based on biomedical knowledge representing (including bio-entity2vec and bio-
doc2vec). It aims at measuring the degree of translation of biomedical research, by plac-
ing biomedical papers on the translational axis (translational continuum) from bench 
to bedside. More than 30 million biomedical papers in the PubMed 2020 Baseline with 
well-extracted biomedical entities (including diseases, drugs/chemicals, genes/pro-
teins, species, and mutations), MeSH terms, and other bibliographic information, were 
employed to perform our experiment.

The proposed indicator in this study was validated from two different perspectives, 
including the clinical trial phase identification and the ACH classification. The results 
of validations indicated that our proposed indicator was of good consistency with previ-
ous studies, such as Ke (2019) and Weber (2013). One advantage of our method over the 
extant ones is that, instead of relying on the human-assigned MeSH terms, our method 
measures the translational progressions of biomedical papers mainly based on the bio-
medical entities mentioned and the full texts. Therefore, our method is more general 
and can be applied to biomedical papers that are not indexed in the PubMed database. 
Meanwhile, our indicator is a PubMed-driven measure, thus we can realize the real-
time calculation and dynamic updating of the translational progressions of biomedical 
papers, using the recent advances in the field of big data analysis and representation 
learning. This could be useful for governments and policymakers to monitor biomedi-
cal research with high translational potential in real-time and to make better decisions. 
Moreover, it is similar to Ke (2019) that the translational progressions in this study are 
continuous values, thus allowing us to measure the degree of translation for biomedical 
papers in the same category with varying scores. Besides, different from the previous 
methods, our method based on the document embeddings not only considers limited 
MeSH terms or clue words, but also includes more semantic information embedded in 
the entire biomedical texts, such as the context and structure.

The in-depth analysis of the translational progressions of biomedical papers from 
three dimensions (i.e., overall, time and topic) reveals three interesting findings. First, 
the distribution of the translational progressions of all the PubMed papers has two peaks, 
which is consistent with the “bimodal distribution” in Ke (2019) based on about 15 mil-
lion PubMed papers published between 1980 and 2013. This also verifies the effective-
ness of our method. Second, the range of translational progressions of all the papers has 
been gradually growing wider over time, indicating the advancement of biomedicine in 
both basic and clinical science. Third, we also found that the research topics in biomedi-
cine can be divided into three different categories, according to the changes in the trans-
lational progressions of their related papers over time. These findings can help students 
and researchers better understand biomedical research from the perspective of transla-
tional medicine.

It is important to note that this study has several limitations that should be addressed in 
future research. First, the data employed in this study are limited to PubMed papers. Other 
biomedicine-related data, such as patents, books, reports, and guidelines, which are also 
the main forms of the results of biomedical research, should also be included for analysis. 
Second, the embeddings trained in this study were only based on the titles and abstracts of 
PubMed articles. It is difficult to obtain large-scale full texts of biomedical papers because 
of copyright issues. Despite this limitation, it has been proven that the embeddings based 
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on titles and abstracts have been successfully used for solving multiple tasks in the field of 
biomedicine (Alley et al., 2019; Chen et al., 2019; El-allay et al., 2021). Besides, this study 
primarily focused on measuring the translational progression of biomedical research, but 
we did not examine whether it could be used to predict the success of the translation of 
biomedical research. We also did not analyze the factors that affect the translational pro-
gressions of biomedical papers. In the future, we will investigate the relationships between 
translational progressions and various factors, such as team diversity, research topics, and 
linguistic features, which will help us to better understand translational medicine and facili-
tate policymakers’ decision-making.

Appendix 1

See Table 4.
The version of MeSH (Medical Subject Headings) we used in this work is the 2020 

MeSH. We downloaded the XML file “desc2020.xml” and the bin file “mtrees2020.bin” 
from its official website (https:// www. nlm. nih. gov/ mesh/ meshh ome. html). A Java script 
was used to parse the XML file, and Sublime Text 3 was used to open the bin file. 
According to statistics, in the 2020 MeSH, there are a total of 29,638 unique MeSH 
terms (descriptors). As a MeSH term can be classified into different categories, a unique 
MeSH term could have multiple tree numbers. For example, the MeSH term “Artifical 
Intelligence” has two tree numbers including “G17.035.250” and “L01.224.050.375”. 
Therefore, the number of tree numbers of the 29,638 MeSH terms is much larger with 
60,666.

Weber (2013) originally proposed the ACH classification system, in which the terms 
beginning with B01 (Eukaryota) were classified as “Animal-related” MeSH terms, 
excluding B01.050.150.900.649.801.400.112.400.400 (Humans); terms beginning with 
A11 (Cells), B02 (Archaea), B03 (Bacteria), B04 (Viruses), G02.111.570 (Molecu-
lar Structure) and G02.149 (Chemical Processes) were classified as “Cell/molecular-
related” MeSH terms; terms beginning with M01 (Persons) and B01.050.150.900.649.8
01.400.112.400.400 (Humans) were classified as “Human-related” MeSH terms. How-
ever, in the 2020MeSH, the tree number of “Humans” has been changed to “B01.050.1
50.900.649.313.988.400.112.400.400”, and the original number “B01.050.150.900.649
.801.400.112.400.400” no longer exists. Meanwhile, “Chemical Processes” (G02.149) 
is no longer a MeSH term in the 2020 MeSH, but an entry term of the MeSH term 
“Chemical Phenomena” (G02). Finally, there are 2,479 A MeSH terms, 3,625 C MeSH 
terms and 332 H MeSH terms.

Table 4  The information about the three categories of MeSH terms

Category The start of the tree number Signal Number

Animal-related B01, excluding B01.050.150.900.649.313.988.400.112.400.400 A 2479
Cell/molecular-related A11,B02, B03, B04, and G02.111.570 C 3625
Human-related B01.050.150.900.649.313.988.400.112.400.400 or M01 H 332

https://www.nlm.nih.gov/mesh/meshhome.html
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Appendix 2: Computing TPD based on biomedical document 
embeddings

AT the document level, we use document embeddings to vectorize the content of the 
paper and the translational axis. Except for biomedical entities, document embeddings 
can capture much more information about biomedical texts than entity embeddings. This 
section is executed in three discrete sub-steps, including biomedical document embed-
dings training (bio-doc2vec) and paper vectorization (Bio-paper2vec), translational axis 
vectorization (TA2vec), and computing the translational progression at the document 
level (TPD) of biomedical papers.

(1) Bio-doc2vec and bio-paper2vec We used the doc2vec component in “genism”6 to train 
the biomedical document embeddings, based on the titles and abstracts of over 30 
million PubMed articles (Donghwa Kim et al., 2019a, 2019b; Le & Mikolov, 2014). 
Specifically, we connected the title and abstract of a paper as an input “document” 
and we chose the PV-DM model to train the document embeddings. The dimension of 
embeddings, the learning rate, the length of the window, the epochs, and the number of 
threads of our experiment were 700, 0.0001, 30, 30, and 12, respectively. The trained 
doc2vec model was also saved as a binary file and can be loaded for the next analysis. 
For a specific biomedical paper P, we can get its document vector �⃗P by inputting the 
cleaned title and abstract into the trained doc2vec model.

(2) TA2vec at the document level Different from the entity level, we use the vector from 
the center of basic papers (the papers assigned only Animal-related or cell/molecular-
related MeSH terms) toward the center of clinical papers (the papers whose types are 
clinical trials or clinical guidelines). Assuming that, in our dataset, the total number 
of basic papers is Nb and the total number of clinical papers is Nc , we can denote the 
sets of basic and clinical papers as 

{

Pb1,Pb2,… ,PbNb

}

 and 
{

PC1,PC2,… ,PCNc

}

 , 
respectively; then, the center vector of basic papers and clinical papers, ������⃗Gbd  and ������⃗Gcd  , 
are given by:

where t and s are both positive integers. Note that, the values of Nb and Nc are chang-
ing over time because the PubMed database is frequently updated by the National 
Library of Medicine. Therefore, the translational axis vector (TA2vec) at the docu-
ment level, ��������⃗BTAp , is calculated by:

  ������⃗Gbd、������⃗Gcd  and ��������⃗BTApare all 700-dimensional vectors according to their definitions.

(a1)������⃗Gbd =

∑Nb

t=1
�����⃗Pbt

Nb

(a2)������⃗Gcd =

∑Nc

s=1
�����⃗Pcs

Nc

(a3)��������⃗BTAp =
������⃗Gcd −

������⃗Gbd

6 It can be downloaded from https:// radim rehur ek. com/ gensim/ models/ doc2v ec. html.

https://radimrehurek.com/gensim/models/doc2vec.html
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(3) TPD computing at the document level Similarly, we use the cosine projection of bio-
paper2vec on TA2vec to quantify the translational progression at the document level 
of biomedical papers. Specifically, the translation progression at the document level 
of paper P, TPDP , is given by:

where the value of TPDP also ranges from − 1 to 1. If the research content of a bio-
medical paper is more orientated to clinical science and practice, the value of TPD is 
closer to 1; on the contrary, the value of TPD is closer to − 1.

Appendix 3

See Table 5.

(a4)TPDP =
���⃗Pd ⋅

��������⃗BTAp

∥ ���⃗Pd ∥ × ∥ ��������⃗BTAp ∥

Table 5  The Search strategies of all 9 research topics in biomedicine

Topics Database Search strategies

Alzheimer’s diseases PubMed “alzheimer disease”[MeSH Terms] OR (“alzheimer”[All 
Fields] AND “disease”[All Fields]) OR “alzheimer 
disease”[All Fields] OR (“alzheimer s”[All Fields] AND 
“disease”[All Fields]) OR “alzheimer s disease”[All 
Fields]

Breast cancer PubMed “breast neoplasms”[MeSH Terms] OR (“breast”[All 
Fields] AND “neoplasms”[All Fields]) OR “breast 
neoplasms”[All Fields] OR (“breast”[All Fields] AND 
“cancer”[All Fields]) OR “breast cancer”[All Fields]

Gene editing PubMed “gene editing”[MeSH Terms] OR (“gene”[All Fields] 
AND “editing”[All Fields]) OR “gene editing”[All 
Fields]

Stem cell PubMed “stem cells”[MeSH Terms] OR (“stem”[All Fields] AND 
“cells”[All Fields]) OR “stem cells”[All Fields] OR 
(“stem”[All Fields] AND “cell”[All Fields]) OR “stem 
cell”[All Fields]

Brown fat PubMed “adipose tissue, brown”[MeSH Terms] OR (“adipose”[All 
Fields] AND “tissue”[All Fields] AND “brown”[All 
Fields]) OR “brown adipose tissue”[All Fields] OR 
(“brown”[All Fields] AND “fat”[All Fields]) OR “brown 
fat”[All Fields]

Coronavirus PubMed “coronavirus”[MeSH Terms] OR “coronavirus”[All Fields] 
OR “coronaviruses”[All Fields]

HIV PubMed “hiv”[MeSH Terms] OR “hiv”[All Fields]
HIV vaccine PubMed “aids vaccines”[MeSH Terms] OR (“aids”[All Fields] 

AND “vaccines”[All Fields]) OR “aids vaccines”[All 
Fields] OR (“hiv”[All Fields] AND “vaccine”[All 
Fields]) OR “hiv vaccine”[All Fields]

HPV vaccine PubMed “papillomavirus vaccines”[MeSH Terms] OR 
(“papillomavirus”[All Fields] AND “vaccines”[All 
Fields]) OR “papillomavirus vaccines”[All Fields] OR 
(“hpv”[All Fields] AND “vaccine”[All Fields]) OR “hpv 
vaccine”[All Fields]
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Appendix 4

See Fig. 10.

Appendix 5

See Fig. 11.

Fig. 10  The changes in the number of related papers on each research topic
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