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A B S T R A C T   

In response to the exponential growth of the volume of scientific publications, researchers have 
proposed a multitude of information extraction methods for extracting entities and relations, such 
as task, dataset, metric, and method entities. However, the existing methods cannot directly 
provide readers with procedural scientific information that demonstrates the path to the prob-
lem’s solution. From the perspective of applied science, we propose a novel schema for the 
applied AI community, namely a metric-driven mechanism schema (Operation, Effect, Direc-
tion). Our schema depicts the procedural scientific information concerning “How to optimize the 
quantitative metrics for a specific task?” In this paper, we choose papers in the domain of NLP for 
our study, which is a representative branch of Artificial Intelligence (AI). Specifically, we first 
construct a dataset that covers the metric-driven mechanisms in single and multiple sentences. 
Then we propose a framework for extracting metric-driven mechanisms, which includes three 
sub-models: 1) a mechanism detection model, 2) a query-guided seq2seq mechanism extraction 
model, and 3) a task recognition model. Finally, a metric-driven mechanism knowledge graph, 
named MKGNLP, is constructed. Our MKGNLP has over 43K n-ary mechanism relations in the form 
of (Operation, Effect, Direction, Task). The human evaluation shows that the extracted metric- 
driven mechanisms in MKGNLP achieve 81.4% accuracy. Our model also shows the potential for 
creating applications to assist applied AI scientists to solve specific problems.   

1. Introduction 

The number of academic papers in the domain of artificial intelligence (AI) has increased twelvefold in the last 20 years2. As a 
result, this “publications flood” has unfortunately buried a significant amount of valuable information. The extraction of structured 
information from unstructured scientific publications might reduce the amount of time that researchers must devote to information- 
seeking and thus improve the efficiency of research and development. 

Lauriola et al., (2022) split NLP into two sub-branches: fundamental (or basic) research and applicative research. Similar to pure 
chemistry and applied chemistry, artificial intelligence can be divided into pure AI and applied AI. Moreover, pure AI scientists 
concentrate on exploring new models, algorithms, and theories at the cutting edge of fundamental AI problems. Applied AI scientists 
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employ various artificial intelligence models, algorithms, and theories to achieve a specific practical goal or application. 
The recent work on scientific information extraction in the AI domain has mainly focused on extracting domain-specific entities, 

such as tasks, datasets, metrics, and methods (D’Souza et al., 2020; Hou et al., 2021; Jain et al., 2020; P. Li et al., 2021; Luan et al., 
2018; Zheng et al., 2021). These domain-specific entities represent the descriptive scientific information and answer factual questions 
beginning with the word “What,” e.g., “What is the issue addressed in this paper?” and “What dataset is adopted in this paper?” Descriptive 
scientific information is predominantly geared toward pure AI scientists, assisting them to keep abreast with the state-of-the-art 
research. However, information needs vary from person to person. Applied AI scientists mainly need procedural scientific informa-
tion, which should answer questions beginning with the word “How,” such as “How can we improve the accuracy of astronomical images 
classification?” Descriptive scientific information is inadequate for assisting applied AI scientists to handle domain-specific problems, 
such as predicting 3D protein structures, imaging black holes, and automating drug discovery. Therefore, there exists a gap between 
the current scientific information extraction research and applied AI scientists’ information needs. In this work, we focus on the in-
formation needs of applied AI scientists. 

The mechanism reveals how to manipulate phenomena and assists individuals to comprehend the solution path (Glennan, 1996; 
Machamer et al., 2000). From the perspective of problem-solving, artificial intelligence can be viewed as the discovery and description 
of the mechanism that exists between a specific problem and its solution (McCarthy, 2007). Benchmarks, proposed to provide fair 
measurements of the research progress, have played a vital role in various AI-related problems. Achieving state-of-the-art performance 
on benchmarks is commonly regarded as a sign of advancement with regard to a specific problem. Therefore, optimizing the per-
formance evaluation metrics using established benchmarks is a critical way to enhance the legitimacy of research (Koch et al., 2021). 
Following the benchmark-driven methodology (Schlangen, 2021), we define the metric-driven research pattern in AI as one that 
focuses on optimizing the performance of a specific task, as measured by the quantitative metrics. 

Furthermore, the metric-driven mechanism described in our paper can be viewed as procedural scientific information on how to 
optimize the quantitative metrics of a specific task. Therefore, this paper primarily focuses on information concerning “how to 
optimize the specific measurable objective.” The NLP domain was chosen for practice in this paper, since it is a representative, 
flourishing branch of AI. It is evident that extracting the procedural scientific information contained in scientific publications, 
particularly metric-optimization information, can improve the efficiency of searching, reading, and using. 

As shown in Fig. 1, we construct a metric-driven mechanism representation schema to express the crucial procedural scientific 
information in AI. In our schema, the metric-driven mechanism is represented as triple in nature (Operation,Effect,Direction). Based on 
the proposed schema, we construct an annotated metric-driven mechanism extraction dataset from the abstracts of ACL papers3. We 
then propose a framework that adopts the pre-trained model (SciBERT (Beltagy et al., 2019) and BART(Lewis et al., 2020)) to extract 
metric-driven mechanism triples in single and multiple sentences. Finally, we construct a metric-driven mechanism knowledge graph 
in NLP, named MKGNLP, to further improve the performance of knowledge retrieval. 

In summary, our primary contributions are as follows:  

• We propose a coarse-grained metric-driven mechanism representation schema. Furthermore, based on the proposed schema, an 
annotated dataset in the NLP domain is constructed, which contains 1,016 metric-driven mechanism triples, distributed across 
single or multiple sentences.  

• We propose a mechanism extraction framework, which is composed of three sub-models: 1) a metric-driven mechanism detection 
model, 2) a query-guided seq2seq metric-driven mechanism extraction model, and 3) a task recognition model4.  

• A large number of publications from ACL are extracted to construct a metric-driven mechanism knowledge graph (KG) based on 
these trained models in our proposed framework. Human evaluations demonstrate that our metric-driven mechanism KG has a high 
degree of accuracy and utility. 

This article is organized as follows: Section II presents a brief literature review; Section III describes the research objectives; Section 
IV describes the schema and dataset of the metric-driven mechanism; Section V elaborates on the metric-driven mechanism’s 
extraction framework; Section VI describes the experimental settings and provides insights into experimental results; and Section VII 
elaborates the construction of the metric-driven mechanism knowledge graph based on the proposed framework and further analyzes 
the application of the knowledge graph. The final section concludes this work and suggests directions for future work. 

2. Literature Review 

In this section, we will first discuss the definition and related work concerning the mechanism in the field of science, then further 
introduce and summarize the related works on scientific information extraction and scientific knowledge graphs. Finally, we will 
outline similarities and differences between our work and the existing works. 

3 https://aclanthology.org.  
4 The data and code are available at https://github.com/mayq97/metric_driven_mechanism. 
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2.1. The Mechanism in the Science Field 

According to the Oxford English Dictionary, a mechanism is “a natural system or type of behavior that performs a particular 
function”5. In the philosophy of science, there is a great deal of discussion about the formal definition of the mechanism. For example, 
Machamer et al., (2000) defined mechanisms as organized entities and activities that produce regular changes from start or set-up to 
finish or termination conditions. Glennan, (1996), meanwhile, defined the mechanism as a complex system that produces behavior 
through the interaction between several parts, according to direct causal laws. 

Mechanisms are involved in many research disciplines, and their definition varies across disciplines. In the field of biology, bio-
chemists and molecular biologists pursue explanations of genes, proteins, and the molecules that influence biochemical reactions in the 
context of mechanistic explanations (Bechtel, 2010; Röhl, 2012; Yang et al., 1996). In the field of chemistry, researchers regard 
chemical reactions as a mechanism. In the field of social science, social mechanisms are considered complexes of agents’ interactions, 
which underlie and account for macro social regularities (Steel, 2007). In the fields of AI, the mechanism can be viewed as a procedure 
that it applied to specific tasks or problems. 

2.2. Scientific Information Extraction 

Information Extraction (IE) refers to the extraction of structured information from unstructured or semi-structured texts. Infor-
mation extraction from scientific literature enables researchers to obtain key insights from scientific documents. The current scientific 
information extraction ranges across the fields of computer science, biomedicine, and chemistry. Furthermore, AI is a flourishing 
branch of computer science. 

In general, the problem of IE comprises Named Entity Recognition (NER) and Relation Extraction (RE) tasks. There are two types of 
approaches to IE: the pipeline-based and the end-to-end joint approaches. Regarding the former approach, the model first recognizes 
entities using a NER method, then extracts the relations between the recognized entities using an RE method (Chan & Roth, 2011; Lin 
et al., 2016; Zhong & Chen, 2021). The strength of the pipeline-based approach is its flexibility when integrating different data sources 
and methods, but its weakness is the error propagation problem between the individual NER and RE steps. Regarding the end-to-end 
joint approach, the model jointly extracts entities and relations using the shared layer or shared parameters between the NER and the 
RE tasks (Eberts & Ulges, 2020; D. Ji et al., 2020; Wadden et al., 2019; Zheng et al., 2021). 

Moreover, X. Li et al., (2019) designed an alternative strategy in which they cast the entity-relation extraction as a multi-turn 
question-answering problem. Cui et al., (2021); Yan et al., (2021) proposed a unified sequence-to-sequence (Seq2Seq) framework 
based on BART (Lewis et al., 2020) to extract entities in the text for flat, nested, and discontinuous NER subtasks. X. Chen et al., (2022), 
meanwhile, proposed a lightweight generative framework with prompt-guided attention for low-resource NER. 

In the case of scientific information extraction, the current scientific information extraction in the AI domain primarily focuses on 
extracting keyphrases (Y. Jiang et al., 2021; Kim et al., 2010), lexical functions of keyphrases (Lu et al., 2020), fine-grained scientific 
entities (e.g. Task, Method, Dataset, and Metric) (D’Souza et al., 2020; Hou et al., 2021; Jain et al., 2020; P. Li et al., 2021; Luan et al., 
2018) and relations (Augenstein et al., 2017; Gábor et al., 2018; Mondal et al., 2021). In SemEval 2017 Task-10, Augenstein et al., 
(2017) proposed the hyponym-of and synonym-of relations. In SemEval 2018 Task-7, Gábor et al., (2018) proposed the usage, result, 

Fig. 1. The Operation refers to a paper’s innovative algorithm, model, and method. The Effect refers to the metrics evaluating the operation’s 
efficiency and performance. The symbols +, − , ~ between operation and effect refer to the change Direction types of Effect entity. Here, we divide 
direction into three categories: positive, negative, and other. 

5 https://www.oxfordlearnersdictionaries.com/definition/academic/mechanism. 
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part-whole, and compare relations. Recently, Mondal et al., (2021) proposed the evaluated-On and evaluated-By relations. 

2.3. Scientific Knowledge Graphs 

Knowledge graphs (Fan & Wang, 2022; S. Ji et al., 2022) are a large linked semantic network of entities and relationships, that 
display huge potential for improving scientists’ daily research efficiency. For example, Papers With Code (PWC) assists the researcher 
to search for and compare relevant works. Following the development of NLP, researchers have proposed many Scholarly Knowledge 
Graphs (SKGs) that are capable of serving specific user needs in the fields of AI. For example, Huo et al., (2022) leverage a novel 
dynamic Bibliographic Knowledge Graph (BKG) with a pre-trained node embedding to improve scientific topic hotness prediction 
performance. Dessì et al., (2020) proposed the Artificial Intelligence Knowledge Graph (AI-KG) to support researchers’ daily work. 
AI-KG has five types of entities (tasks, methods, metrics, materials, and others) and 27 relations. Kabongo et al., (2021) constructed a 
Leaderboard for various AI subdomains to enable AI scientists to keep track of research progress. The AI-Leaderboard includes Task, 
Dataset, Metric (TDM) triples. Mondal et al., (2021) constructed an NLP TDM KG based on scientific papers using the end-to-end 
approach. In short, the current research emphasizes descriptive information (e.g., task, dataset, metric, and their interrelations) 
rather than procedural information in scientific publications. 

2.4. Similarities and Differences with Existing Works 

There exist several studies related to mechanism representation and extraction in different domains. Hope et al., (2017) proposed a 
weak structural representation that describes an idea using product descriptions regarding the purpose (what they are trying to achieve) 
and mechanism (how they achieve that purpose). V. Z. Chen et al., (2020) identified the hypotheses within scientific documents related to 
the fields of business and management, from which they then extracted the cause and effect entities in those hypothesis sentences. 
Hope et al., (2021) built a COVID-19 mechanism relations knowledge base, which includes activities, functions, and influences re-
lations extracted from the COVID-19 Open Research Dataset (CORD-19) (Wang et al., 2020). In summary, all of the previous con-
structed a very simple mechanism knowledge representation schema, which is an optimal solution considering the trade-offs among 
ease of extraction, scalability, and coverage. The main difference between our work and these previous studies is that we focus on the 
mechanism information concerning metric-optimization information in the fields of AI. 

Scholars (D’Souza et al., 2020; Eberts & Ulges, 2020; Hou et al., 2021; Jain et al., 2020; P. Li et al., 2021; Zheng et al., 2021) 
proposed various methods and datasets in the fields of AI to solve the scientific information extraction problem. The main differences 
between these and our current work are as follows:  

• The orientation of the extraction differs. The current work primarily focuses on descriptive scientific information, such as tasks, 
datasets, metrics, method entities, and entity relations. Our work shifts the attention from descriptive scientific information to 
procedural scientific information. We propose a metric-driven mechanism schema (Operation, Effect, Direction) to represent the 
metric-optimization information stated in the papers’ abstracts. 

• The information extraction mode differs. For scientific information extraction, researchers formalize it as a natural language un-
derstanding task in a sequence-labeling style. To extract the long entities in the metric-driven mechanism at the paragraph level, we 
transfer the metric-driven mechanism extraction from a sequence-labeling format into a multi-turn text generation format. To avoid 
ambiguous entities, we formalize the task entity extraction problem as a multi-label classification task. 

3. Research Objectives 

As described in the Introduction section, the current scientific information extraction methods primarily answer questions 
beginning with the word “What.” The purpose of this study is to find procedural scientific information that answers questions 
beginning with the word “How.” Specifically, our research objective is to extract the procedural scientific information from the ab-
stract text to answer the typical research problems in AI (i.e., optimizing specific metrics for related tasks) and build a scientific 
knowledge graph for metric-optimization information in AI. Therefore, we propose to answer the following two research questions: 

Question 1: how can we represent the metric-optimization information stated in the paper abstract? 
Question 2: how can we extract the metric-optimization information? 
For question 2, we divided the target problem into three subtasks: Subtask 1: Abstract selection. Identify abstracts containing a 

metric-driven mechanism; Subtask 2: Mechanism extraction. Extract the metric-driven mechanism from the recognized sentences; and 
Subtask 3: Task extraction. Map a given abstract to a predefined tasks’ taxonomy. 

4. The Metric-driven Mechanism Schema and Dataset 

In this section, we will first introduce the metric-driven mechanism from the distribution, and schema to statement patterns in the 
abstract. Then, we will further propose the dataset for metric-driven mechanism extraction. 

Y. Ma et al.                                                                                                                                                                                                             
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4.1. The Metric-driven Mechanism 

4.1.1. Distribution of the Metric-driven Mechanism 
A detailed mechanism description is required in many scientific fields in order to deliver a satisfactory explanation (Machamer 

et al., 2000). As shown in Table 1, the mechanism for specific measurable objectives exists in AI (e.g., natural language processing and 
computer vision), chemistry, biology, and other domains. 

The abstracts of scientific research papers provide the readers with an informative summary of the entire paper. The scientific 
abstract is primarily composed of four parts: Introduction, Methods, Results, and Discussion. In the fields of AI, benchmarks (Martí-
nez-Plumed et al., 2021) formalize a particular task through datasets and associated measurable metrics. To increase the legitimacy of 
research work, it is common to improve the metric value related to specific target tasks on an openly-established benchmark. As a 
result, researchers explicitly state that their models improve or reduce specific metrics in the paper’s abstract in the AI field. 

To analyze the distribution of metric-driven mechanisms, we manually annotated the long papers in ACL. To ensure the repre-
sentativeness of the selected papers and comparability between different years, we choose papers in ACL 2020, and ACL 2021 as 
representative of the recent research in the NLP field, and papers in ACL 2010, and ACL 2011 as representative of earlier research in the 
NLP field. As shown in Table 2, about 40% of the papers’ abstracts contain a mechanism for optimizing task-related metrics. Moreover, 
the percentage of metric-driven mechanisms has increased slightly in recent years. 

Moreover, we randomly selected 100 papers from ACL for a fine-grained analysis of the distribution of metric-driven mechanisms in 
the NLP domain. We found that 76% of the papers contained a metric-driven mechanism, while a further 24% of them focus on 
research on constructing a new dataset, proposing a novel task, and conducting an empirical or theoretical analysis. 

Further, we divide papers containing the metric-driven mechanism into two categories: 

(1) Providing clear, specific metric-driven mechanism descriptions in the abstract, such as “using only half the number of pa-
rameters, our model achieves competitive accuracy with the best extractor, and is faster”, accounts for 44% of the papers.  

(2) Claiming the qualitative effect of the proposed method in the abstract, such as “we argue that discourse references have the 
potential of substantially improving textual entailment recognition”, accounts for 32% of the papers. Although there are no 
specific metric-driven mechanism descriptions in the abstract, based on an analysis of partial full-text data, we found that the 
main sections (e.g., the results and discussion sections) of the papers contained many metric-driven mechanisms. 

Due to the limited availability of full-text data, we mainly focus on the former category in this paper. We also have tested our model 
for the main sections of the papers. The results show that our model can extract the metric-driven mechanism from the main sections. 
In future, we will further explore the metric-driven mechanism extraction from the bodies of papers, once the papers’ full-text data are 
available. 

4.1.2. Schema for the Metric-driven Mechanism 
The mechanism expresses the causal relationship between the phenomena or entities within a schema. These phenomena or entities 

that are expressed in the mechanism vary from the concrete (e.g., chemicals, cells, and plants) to the abstract (e.g., theories and 
concepts). There exist several studies related to mechanism extraction and representation (V. Z. Chen et al., 2020; Hope et al., 2021), 
all of which construct a straightforward mechanism representation schema. According to the characteristics of AI research, we divide 
these phenomena or entities into two types, operation and effect, based on the trade-offs among ease of extraction, scalability, and 
coverage. 

Metrics play a central role in AI research, and are found metrics in 42% of the ACL papers’ abstracts. The metric in the abstract is 
employed as a comparable indicator to state the effect of the proposed methods and models on specific tasks. In this work, we propose a 
metric-driven mechanism schema, in which the metric-driven mechanism in natural language is abstracted as a triple in nature 
(Operation, Effect,Direction): Operation represents an entity, such as a method or a model, proposed by the researcher; Effect refers to 
the metrics evaluating the operation’s efficiency and performance, such as the F1-score, error rate, and time cost; and Direction ex-
presses the relationship between the operation entity and the effect entity. 

Effect is a measurable, comparable entity in a metric-driven mechanism schema. Therefore, we use the trisection method to divide 
the Direction in the metric-driven mechanism triple into positive, negative, and other.  

• Positive: the method/model proposed in the research article improves the metric; for example, the pretraining model improves the 
F1 score of the text classification task.  

• Negative: the method/model proposed in the research article reduces the metric; for example, using structural features to reduce the 
alignment error rate.  

• Other: other than the above two relationships; for example, an external feature affects the metric, but we did not know the effect’s 
direction. 

4.1.3. Statement of the Metric-driven Mechanism 
According to the range of metric-driven mechanism texts, the metric-driven mechanism in the abstract includes two expression 

types: 1) existing in a single sentence; and 2) existing in multiple sentences, as shown in Table 3. The forms of the metric-driven 
mechanism existing in a single sentence can be further divided into two types: explicit description and implicit description. There-
fore, we focus on metric-driven mechanisms in both single and multiple sentences in this paper. 

Y. Ma et al.                                                                                                                                                                                                             
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4.1.4. Differences with Existing Schemas 
The current scientific information extraction schema, especially the SCIERC, primarily focuses on descriptive scientific informa-

tion, such as tasks, metrics, method entities, and entity relations. As shown in Fig. 2, the schema proposed in SCIERC uses the evaluate- 
for to describe the relationship between the “triphone and semi phone systems” and “error rate,” which cannot represent information 
about metric optimization. 

Our metric-driven mechanism schema shifts the attention from descriptive scientific information to procedural scientific infor-
mation. We compared our mechanism recognition result with the schema in SCIERC. As shown in Fig. 2, using our schema, the in-
formation on metric optimization can be extracted; for example, the “improved duration model” has a negative effect on the “error rate.” 
Based on the extracted metric-driven mechanism, questions regarding metric optimization can be answered, such as “How can we 
reduce the error rate of triphone and semi phone systems?” 

4.2. Dataset 

4.2.1. Dataset Construction 
To the best of our knowledge, there is no available annotated dataset for metric-driven mechanism extraction. Therefore, we 

construct a metric-driven mechanism extraction dataset that primarily includes mechanism identification and mechanism anno-
tation. In the dataset annotation stage, the annotated result is independent of the published paper’s year. 

In the mechanism identification step, the annotator must judge whether or not the abstract contains the metric-driven mech-
anism. Abstracts that do so are usually linked with the metric entities and cue verbs (e.g., improve, reduce) that reflect the change 
direction. Therefore, we use two heuristic rules to pre-label the ACL papers’ abstracts to improve the annotation efficiency. Specif-
ically, heuristic rules primarily consider two aspects: verbs (e.g., effect, influence, decrease, reduce, increase, and improve), and metric 
entities (e.g., accuracy, F1 score, BLEU, performance, and quality). The SpERT (Eberts & Ulges, 2020), trained on the SCIERC dataset 
(Luan et al., 2018), is employed for the metric entities recognition. 

Table 1 
The Mechanism in scientific research. The example mechanisms are drawn from scientific abstracts in the fields of natural language processing (NLP), 
computer vision (CV), chemistry (Chem), and biology (Bio).  

No. Example Field 

1 We apply SVM ranking models and achieve an exact sentence accuracy of 85.40% on the Redwoods corpus. NLP 
2 In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. CV 
3 The rate of reduction is decreased by increasing amounts of stabilizing agents and increased by increasing concentrations of precursor ions. Chem 
4 Low light availability and high nutrient availability increased the nitrogen content of leaf tissue by 53% and 40% respectively, resulting in a 

37% and 31% decrease in the C/N ratio. 
Chem 

5 In conclusion, high-energy diet may improve number of small follicles and alter energy metabolite during early luteal phase in cycling ewes. Bio 
6 Knocking down the expression of TaLSD1 through virus-induced gene silencing (VIGS) increased wheat resistance against Pst accompanied by 

an enhanced hypersensitive response (HR), an increase in PR1 gene expression and a reduction in Pst hyphal growth. 
Bio  

Table 2 
Distribution of the metric-driven mechanism. About 40% of papers’ abstracts contain one.  

Year Number of total abstracts Number of abstracts containing metric-driven mechanism Percentage 

2010 159 58 36.5% 
2011 162 73 45.1% 
2020 778 315 40.5% 
2021 571 255 44.7%  

Table 3 
Metric-driven mechanism statement patterns in the abstract.  

Mechanism 
Position 

Description Example 

Single sentence Explicitly state the effect of the innovative model or 
method on the specific metric or aspect. 

The structured neural parser achieves a 1.8% accuracy improvement. 

Implicitly state the effect of the innovative model or 
method on the specific metric or aspect by comparison 

1. We compare LDA-SP to several state-of-the-art methods achieving an 85% 
increase in recall at 0.9 precision over mutual information (Erk, 2007). 
2. We show that scaling to large topic spaces results in much more accurate models. 

Multiple 
sentences 

The effect entities and operation entities are separated 
from each other in different sentences. 

For decoding, we describe a coarse-to-fine approach based on lattice dependency 
parsing of phrase lattices. We demonstrate performance improvements for 
Chinese-English and Urdu-English translation over a phrase-based baseline.  

Y. Ma et al.                                                                                                                                                                                                             
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In the mechanism annotation step, the annotator must label the effect and operation entities in the metric-driven mechanism’s 
schema, then determine the relationship between the effect and operation entities based on context analysis and reasoning. Here, we 
employ BRAT6 as the annotation tool for metric-driven mechanism tagging. The two annotators are graduate students with an NLP 
background. In cases of annotation disagreement on the entity boundaries, we choose the longer annotation. 

For the metric-driven mechanism in a single sentence, some of the operation entities are pronoun phrases, such as the proposed 
model, our model, and the model. When pronoun phrases play the role of an operation entity in metric-driven mechanisms, the an-
notators are required to find and label the actual operation entity in the abstract context based on reasoning. 

Moreover, we use the paper metadata in PWC as a training dataset for task extraction. PWC is an open-source repository of papers, 
datasets, and evaluations in the fields of machine learning and natural language processing, created by researchers at Facebook AI 
Research7. PWC contains a taxonomy of tasks and subtasks (Koch et al., 2021). There exist 2,328 task categories in the PWC dataset. 

4.2.2. Annotated Dataset Analysis 
Based on the annotated dataset, summaries of the statistics for the datasets are provided in Table 4 and Table 5. As shown in 

Table 4, the proportion of papers’ abstracts that describe metric-driven mechanisms is 39.5%. We find that the operation entity is 
primarily distributed in the third to sixth sentences, and the effect entity is distributed mainly in the fourth to eighth sentences, as 
shown in Fig. 3a. In Table 5, the distribution of metric-driven mechanism relations is also highly imbalanced, with positive affect 
relations accounting for the majority. Approximately 55% of the metric-driven mechanisms exist in the same sentence. For those 
existing in multiple sentences, we find that the operation entity is usually stated before the effect entity, as shown in Fig. 3b, which is 
consistent with the expression pattern of the abstract; i.e., the IMRaD structure8. 

5. Methodology 

Recently, the pre-trained models, e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and BART (Lewis et al., 2020) have 
promoted the performance of natural language understanding tasks ranging from text classification and named entity recognition to 
text generation. We propose a framework based on a pre-trained model to extract the metric-driven mechanisms. As shown in Fig. 4, 
our framework contains three components: 1) a metric-driven mechanism detection model, 2) a query-guided sequence-to-sequence 
(seq2seq) metric-driven mechanism extraction model, and 3) a task recognition model. In this work, the metric-driven mechanism 
detection model and extraction model are trained on the annotated dataset on ACL papers’ abstracts (Section 4.2). For task recognition, 
we leverage the paper metadata in PWC as the model training dataset. 

5.1. Mechanism Detection 

We formalize the metric-driven mechanism detection as a binary text classification task. Given a scientific paper’s abstract Xabs, the 
model must identify whether or not Xabs contains a complete metric-driven mechanism. SciBERT (Beltagy et al., 2019) is a pre-trained 
language model based on BERT for the scientific domain, which utilizes large-scale scientific publications as a pretraining task dataset 
and advances downstream scientific NLP tasks. Therefore, our metric-driven mechanism detection model uses SciBERT as the back-
bone for extracting the text’s semantic information. Our BERT-based mechanism detection model contains two parts; i.e., a text 
encoder and a classification layer. 

In the text encoder, we employ SciBERT to extract the text features of the input paper abstract. The input of the text encoder can be 
represented as follows: 

Xabs = [[CLS], token1, token2,⋯, tokenm, [SEP]] (1) 

Fig. 2. Comparison between our schema and SICERC. SICERC primarily focuses on descriptive information. Whereas our schema can represent 
information about metric-optimization. 

6 https://brat.nlplab.org/standoff.html.  
7 We downloaded the PWC dataset (licensed under CC BY-SA 4.0), and primarily focused on the Papers with abstracts archive.  
8 https://en.wikipedia.org/wiki/IMRAD. 
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where tokeni denotes the ith token of the Xabs as tokenized by the corresponding tokenizer. m is the token number of Xabs, and [CLS] and 
[SEP] correspond to the special symbol at the abstract’s beginning and end, respectively. We can obtain the text vector representation h 
via SciBERT through multiple Transformer (Vaswani et al., 2017) layers. 

h = SciBERT(X) (2) 

In the classification layer, we use hCLS, the first component of h, corresponding to the [CLS] token, as the input to the classification 
layer. We use a fully connected layer in the classification layer to map the hCLS to a 2-dimensional label logits vector, then a softmax 
function to the label logits to obtain the probability distribution regarding whether or not the input abstract contains a metric-driven 
mechanism. 

p = Softmax(W ⋅ hCLS + b) (3)  

where p is a 2-dimensional vector that denotes the probability that the abstract contains mechanisms, and W and b denote the weight 
and bias in the fully connected layer, respectively. 

Limited by the training data, we employ the data augmentation to enhance the model’s performance. We add sentence granularity 
text to the original paragraph granularity training dataset. Specifically, if the sentence contained an effect entity, it was labeled 1. To 

Table 4 
Statistics for the dataset for subtask 1.  

Statistics items Number 

Total # of abstracts 1,670 
# of abstracts containing metric-driven mechanism 660 
# of abstracts not containing a metric-driven mechanism 1,010  

Table 5 
Statistics for the dataset for subtask 2.  

Type Statics items Number 

Eentity # of Entities 1,712 
# of Operation Entities 778 
Avg # of Operation Entity Tokens 4.36 
# of Effect Entities 934 
Avg # of Effect Entity Tokens 1.44 

Relation # of Total relations 1,016 
# of Positive 652 
# of Negative 274 
# of Other 90  

Fig. 3. Position distribution of metric-driven mechanism entities in abstracts. (a): The operation entity is in the first half of the abstract, and the 
effect entity in the second half. (b): The X-axis represents the distance between the operation entity and the effect entity. A negative value denotes 
that the operation entity is before the effect entity, and 0 denotes that the operation entity and effect entity exist in the same sentence. 
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improve the robustness of the trained model, we augment the text data by randomly substituting or swapping words in the abstracts9. 
We employ the Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016), an explainable AI (xAI) framework, 

to explain individual predictions. LIME first samples instances around an individual abstract text by adding a perturbation to the 
original text. Specifically, LIME randomly deletes words from the original text to perform perturbation, then classifies the generated 
samples using the trained model. Finally, the contribution of each word of the original text to the final model prediction result is 
generated by applying the LIME framework. 

5.2. Mechanism Extraction 

5.2.1. Task Formulation 
Mechanism extraction is an information extraction task that includes named entity recognition and relation extraction. For a given 

abstract Xabs, our model should extract the metric-driven mechanism triples {(e1, o1, d1), (e2, o2, d2),⋯, (ei, oi, di),⋯, (en, on, dn)} from 
Xabs. The ei, oi, di correspond to the effect, operation, and direction in metric-driven mechanisms respectively, while n is the number of 
metric-driven mechanism triples. 

The traditional methods formalize the NER as a sequence labeling or span classifying task. Given two entities and their related 
contexts, the RE is usually formalized as a multi-class classification task. The common paradigm of the NER and RE methods is to assign 
a label-specific classification layer based on pre-trained language models. 

The metric-driven mechanism is distributed at the paragraph level, and many operation entities exceed ten. Moreover, the 
statement of metric-driven mechanisms is diverse. Therefore, we formalize the metric-driven mechanism as a text-to-text format, 
inspired by the T5 model (Raffel et al., 2020). T5 converts every language problem into a text-to-text format. Analogizing to multi-Turn 
question answering (X. Li et al., 2019), we cast the metric-driven mechanism extraction into a query-guided multi-turn text generation 
task. 

As shown in Fig. 5, for a given paper abstract, we extract the metric-driven mechanism by constructing a specific query for the Effect 
and Operation, which encodes vital information for the entity/relation class that we wish to identify. The query is concatenated with a 
paper’s abstract to feed into the model. The model-generated text is the metric-driven mechanism’s target entity. 

5.2.2. The Query-guided Seq2seq Mechanism Extraction Model 
To extract a metric-driven mechanism, we utilize the encoder-decoder architecture. Specifically, our mechanism extraction model 

employs BART (Lewis et al., 2020) as its backbone. To guide the model generation text, we adopt the encoder-decoder architecture 
with queries to generate the target entity in a metric-driven mechanism. 

Encoder In our model, we design Q = {qeffect , qoperation} as the model generating guide. Q encodes the semantic information on a 
specific entity/relation class. For a given Xabs, our model generates target ei, oi in multi-turns. The effect is the core of metric-driven 
mechanisms. Therefore, our model first concatenates the Xabs and qeffect as encoder input Xq+abs to obtain the effect entities {e1,e2,⋯ 
, em}. Then, we construct the query qoperation = {q+, q− , q∼} for the Operation extraction. As shown in Fig. 5, the query for Operation 
incorporates the information about the Effect and Effect change direction. q+, q− , and q∼ correspond to an Operation that has positive, 
negative, and other effects on a specific Effect entity. 

Fig. 4. The Metric-driven Mechanism Extraction Framework. (1): The mechanism detection model can filter papers that lack the metric-driven 
mechanism, which leverages SciBERT as the backbone; (2): We utilize the encoder-decoder architecture to extract a metric-driven mechanism. 
The seq2seq mechanism extraction model leverages BART as the backbone; (3): The task recognition model also leverages SciBERT, which is the 
same as the mechanism detection model, as the backbone. Note that we formalize the task entity extraction problem as a multi-label classification 
task to avoid entity normalization. 

9 We use the nlpaug (https://nlpaug.readthedocs.io) to augment the text data. 
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The encoder in the encoder-decoder architecture is used to encode the Xq+abs into the hidden representation space as vector Hen. 

Hen = Encoder
(
Xq+abs

)
(4)  

where, Hen ∈ R n×d and d is the hidden state dimension. 
Decoder In our model, the target sequence Y refers to the entities in the metric-driven mechanism. For a given query, if the number 

of target entities exceeds one, such as a paper’s abstract that has more than one effect entity, we use “<>” as a separator between the 
target entities. The decoder uses the encoder outputs Hen and the previous decoder outputs y1, y2, y3, ⋅, yt− 1 as the inputs and outputs 
the hidden state ht for yt. 

ht = Decoder
(
Hen; ỹt− 1

i=1

)
(5)  

where ht ∈ R d, ỹt− 1
i=1 is the decoder outputs before t. 

5.3. The Task Recognition Model 

Traditionally, the task entity extraction problem is formalized as a sequence-labeling task. However, the sequence-labeling 
methods extract the entity without normalization. For example, the extracted entities “NER” and “named entity recognition” are 
considered different entities. To avoid uncontrollable extracted task entities and entity normalization, we formalize the task entity 
extraction problem as a multi-label classification task. 

The architecture of the task recognition model is similar to the mechanism detection model, which consists of a text encoder and a 
classification layer. Here, we use SciBERT as a text encoder, which converts the input Xabs to an embedding h. Then, we use the fully 
connected layer to perform dimension mapping and the softmax to obtain the probability distribution for all 2,328 task categories. 

p = Softmax(W ⋅ h+ b) (6)  

where p is a 2328-dimensional vector that denotes the probability distribution on task entities and W and b denote the weight and bias 
in the fully connected layer, respectively. 

6. Model Evaluation 

6.1. Experimental Setup 

We ran experiments using the implementations of pre-trained models from Huggingface transformers10. Specifically, the BART 
model is distilbart-cnn-12-6, and the T5 model is T5-base. We use the PyTorch code for SpERT11. For text preprocessing, we use the 
Spacy. The batch size is 8. The number of training epochs is 40. The generation max length of the Seq2seq Mechanism Extraction Model 
is 20. The learning rate is 2 × 10− 5. All of the methods were run on a server configured with RTX 3090Ti, 32CPU, and 32G memory. 

Fig. 5. We jointly extract the entities (Operation and Effect) and relation in metric-driven mechanism by constructing different queries to guide the 
seq2seq mechanism extraction model to generate target entities. The “non entity” refers to the fact that no related operation entity has a negative 
effect on BLEU. If multiple target entities exist, these entities will be concatenated by a specific separator. 

10 https://huggingface.co.  
11 https://github.com/lavis-nlp/spert. 

Y. Ma et al.                                                                                                                                                                                                             

https://huggingface.co
https://github.com/lavis-nlp/spert


Information Processing and Management 60 (2023) 103315

11

6.2. Evaluation of the BERT Based Mechanism Detection Model 

In the training stage, we built the Abs+Sent dataset by adding sentence granularity text to the original paragraph granularity 
training dataset. Specifically, if the sentence contained an effect entity, it was labeled 1. Additionally, we built the Aug-Abs+Sent 
dataset by randomly substituting or swapping words in the abstracts of Abs+Sent dataset. 

As shown in Fig. 6, we find that incorporating sentence granularity text (Abs+Sent in Fig. 6) improves the mechanism detection 
performance compared with using the papers’ abstracts alone. Moreover, data augmentation also improved the performance of 
mechanism detection in recall. Our mechanism detection model achieves an 84.6 recall for papers abstracts that contain a metric- 
driven mechanism and a 72.2 F1-score for the test set, which has 136 papers’ abstracts that contain a metric-driven mechanism 
and 199 that do not. 

To verify the mechanism detection model, we adopted the LIME to interpret the mechanism detection model. Specifically, we 
employed LIME to explain the mechanism detection model predictions for an abstract. Based on the LIME framework, we find that cue 
verbs and metrics entities significantly help to judge whether or not an abstract contains a metric-driven mechanism. The cue verbs 
include “achieve”, “increase”, “improve”, and “reduce”. In Fig. 7, the model mainly uses “BLEU”, “achieves", and “improve” to perform 
the mechanism detection. 

6.3. Evaluation of the Query-guided Seq2seq Mechanism Extraction Model 

We leverage external data, namely the entities data in the SCIERC dataset, to fine-tune the BART model for domain adaptation 
before the model training. SICERC is a collection of 500 scientific abstract annotated with scientific entities and relations. Benefiting 
from the encoder decoder architecture, we only need to construct a specific-query for the entity classes in SCIERC instead of changing 
the model structure for model domain adaptation fine-tuning. However, the SCIERC dataset is small, which resulted in the model that 
was fine-tuned on SCIERC achieving a lower performance than the model without fine-tuning for direction classification, as shown in 
Table 6. Moreover, we also augment the training text to improve the robustness and performance of our model. 

We compared our mechanism extraction model with the BERTNER and SpERT. The BERTNER model is a general model in the 
scientific named entity recognition task, which is fine-tuned on the SciBERT. The SpERT (Eberts & Ulges, 2020) is a strong model for 
span-based joint entity and relation extraction in a sequence-labeling style. 

Qualitative analysis. Our mechanism extraction model achieves high fidelity. For the generated metric-driven mechanism en-
tities, 94% of the effect entities and 77% of the operation entities can be found in the original abstract text, respectively. The huge 
number and diversity of operation entities cause lower fidelity compared to the effect entities. Moreover, there are two reasons why a 
few of the generated entities are not drawn from the original text.  

1 Our model paraphrases the target entity. For example, the “structured” in “structured neural parser” is substituted by “structural” in 
our generated entity based on our seq2seq mechanism extraction model.  

2 Our model does not simply copy the original text to overfit the original entities but generates target entities through reasoning. For 
example, our model generates “accuracy” from “we show that scaling to large topic spaces results in much more accurate models.” 

Quantitative analysis. From the perspective of text generation, our model achieves 53 on the rouge-1 score and 37 on the rouge-2 
score. We used the relax match to compute the generated entities. If the word overlap rate between the reference entity and the 
generated entity exceeds 0.9, the generated entity will be considered a correct entity. As shown in Table 6, our BART-based seq2seq 
mechanism extraction model achieves a 63.6 F1-score on Operation and Effect entity recognition and a 49.4 F1-score on Direction 
recognition. Metric entities are tagged in SCIERC. Therefore, the fine-tuned BART-based seq2seq model achieves an 86.5 F1-score on 
effect entities. Compared with the span-based NER methods (Fu et al., 2021; Z. Jiang et al., 2020) which are restricted by the max span 
length, our model can generate long entities without any length restriction. 

Additionally, we change the backbone to the T5 model (Raffel et al., 2020), which is pre-trained on a multi-task mixture of un-
supervised and supervised tasks. Each task is converted into a text-to-text format. The T5-based metric-driven mechanism extraction 
model achieves a 61.8 F1-score on Operation and Effect entity recognition and a 56.0 F1-score on Direction recognition, which 
outperforms the baseline model. 

Our metric-driven mechanism extraction task requires the model to understand the input text and copy the target entity from the 
original text. The BART model uses a seq2seq architecture and is particularly effective in the case of text generation and compre-
hension tasks. The T5 model also uses the seq2seq architecture and converts each task into a text-to-text format. Compared with the 
BART-based model, the performance of the T5-based model is lower for entity recognition and higher for Direction relation recognition 
compared to the BART-based model. Based on an analysis of model output, we find that the text generated by the BART-based model is 
both more fluent and more coherent. 

6.4. Evaluation of the BERT Based Task Extraction Model 

Our BERT-based task extraction model achieves an 89 F1-score, 93 on precision, and 85 on recall. The paper task distribution is 
unbalanced. We divided the task into three classes: high-, middle-, and low-frequency tasks. According to the frequency of the tasks in 
the total dataset, the high-frequency tasks are the top 25% of the tasks, the low-frequency tasks the bottom 50%, and the rest are 
middle-frequency tasks. Furthermore, we divide the papers included within the test dataset into three categories. As shown in Table 7, 
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our model outperforms on papers with high-frequency tasks, but only achieves a 50 F1-score for papers with low-frequency tasks. 

7. The NLP Metric-driven Mechanism KG 

7.1. The Construction of the NLP Mechanism KG 

Task entities refer to the research problem in NLP scientific papers. We further extend the metric-driven mechanism from 

Fig. 6. Result of the BERT-based mechanism detection model. We primarily focused on the test results for papers’ abstracts containing metric- 
driven mechanisms. PMechanism, RMechanism, F1Mechanism correspond to the precision, recall, and F1-score for papers abstracts containing a metric- 
driven mechanism respectively. F1Total refers to the F1-score for all of the papers’ abstracts. 

Fig. 7. Examples of the mechanism detection model based on the LIME framework. The x-axis refers to the word’s contribution to the prediction 
result, where the positive and negative values correspond to the probability that the abstract text does or does not contain a metric-driven 
mechanism, respectively. a) and b) are the abstracts in natural language processing. 

Table 6 
Evaluation result of the metric-driven mechanism extraction model.   

Effect Operation Total Entities Direction 

P R F1 P R F1 P R F1 P R F1 

BERTNER 63.7 76.6 69.6 38.1 60.0 46.6 50.9 68.3 58.1 - - - 
SpERT 69.2 67.0 68.1 56.7 50.7 53.5 63.0 58.8 60.8 35.2 35.1 35.2 
Seq2SeqNoFinetune 79.0 81.6 80.3 49.4 49.4 49.4 62.0 63.1 62.6 49.4 49.4 49.4 
Seq2SeqFinetune 84.7 88.4 86.5 47.2 46.1 46.6 63.2 64.1 63.6 47.2 46.1 46.6  
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(Operation, Effect, Direction) to (Operation, Effect, Direction, Task), which is called the n-ary mechanism relation. Using the PWC 
hierarchical task taxonomy, our NLP metric-driven mechanism KG supports the automatic semantic extension of tasks. For example, 
our NLP Mechanism KG can yield metric-driven mechanisms for Paraphrase Generation, News Generation, and Paper generation when a 
user sends a query about Text Generation. We find that the text generated by the BART-based model is both more fluent and more 
coherent compared to the T5-based model. Therefore, we use the BART-based model to extract metric-driven mechanisms. 

Fig. 8a shows that the proposed NLP metric-driven mechanism KG contains three entity classes: Tasks, Operations, and Effects. 
Moreover, our knowledge graph contains four relation classes (“Positive,” “Negative,” “Other,” and “evaluated By”). “Positive,” 
“Negative,” and “Other” describe the influence direction between the operation entity and the effect entity, while “evaluated By” 
denotes the relationship between the task and effect entities. Based on the papers’ abstracts, that were downloaded from Semantic 
Scholar Academic Graph12, we build a knowledge graph of the metric-driven mechanisms in the NLP domain (MKGNLP). There are a 
few duplicated metric-driven mechanisms, i.e., two mechanisms have the same operation and effect entities, but the relations between 
the entities differ. We propose a relation priority rule (negative > positive > other) to eliminate the duplicated metric-driven mecha-
nisms. Finally, the MKGNLP has 43K n-ary mechanism relations. 

7.2. Analysis of the NLP Mechanism KG 

We selected 7,908 abstracts from papers that were published at ACL conferences between 2000 and 2021 to analyze the metric- 
driven mechanisms distribution. As shown in Fig. 8b, 40% of the papers’ abstracts contain a metric-driven mechanism. This pro-
portion of papers shows an upward trend, and 6,825 n-ary mechanisms were extracted from the papers’ abstracts. To check the quality 
of the extracted metric-driven mechanisms, we manually verified 70 metric-driven mechanisms from 50 ACL 2015 papers. The ac-
curacy of the extracted metric-driven mechanisms is 81.4%. 

In our KG, after manually merging the same entities for entity disambiguation, the top ten effect entities were found to be “per-
formance,” “accuracy,” “BLEU,” “precision,” “translation quality,” “robustness,” “recall,” “perplexity,” “error,” and “speed,” in 
descending order of occurrence. Moreover, a positive change direction of an Effect entity under the Operation entity accounts for the 
majority, accounting for 53% of the total, while a negative change direction accounts for 8%. There are 21,014 operation entities, so 
these far outnumbered the effect entities. For the operation entities, we use the pre-trained language model to obtain the embedding of 
operation entities, which were then clustered based on their embeddings. In Fig. 9, we visualize the results of the operation entities 
clustering, and the representative operation entities in Fig. 9 are shown in Table 8. 

7.3. Applications of MKGNLP 

The MKGNLP enables applications to retrieve metric-driven mechanisms in NLP to obtain the procedural scientific information on 
how to optimize the quantitative metrics of a specific task. For example, a user can search all papers that contain a mechanism related 
to the question: how to improve the BLEU score for the machine translation task. The Google Scholar search result items are unstructured 
snippets from scientific abstracts as shown in Fig. 10a. We design a prototype search engine for retrieving the metric-driven mechanism 
to illustrate the application value of MKGNLP. Our metric-driven mechanism search engine can provide user structured, fine-grained 
metric-optimization information, which improves the efficiency of searching as shown in Fig. 10. 

The MKGNLP is acted as the back-end data server, which provides the metric-driven mechanism. The front-end interface is shown in 
Fig. 10b, in which users can send the query by filling the slots (effect, direction and task). To obtain target metric-driven mechanisms, 
we employ the SciBERT to obtain the embeddings of effect and task entities in MKGNLP, then compute the cosine similarity score to find 
potentially relevant n-ary mechanism relations. Finally, we re-rank the retrieved relations according to the papers’ year of publication. 

8. Implications and Conclusion 

8.1. Implications 

This study has the following theoretical implications. First, we propose a metric-driven mechanism schema in the form of 
(Operation, Effect, Direction) to represent the metric-optimization information. It bridges the gap between the current scientific 

Table 7 
Evaluation result of the BERT-based task extraction model.   

P R F1 # of Papers 

High 94.5 86.8 90.5 4,810 
Middle 86.0 65.2 74.2 530 
Low 69.2 39.1 50.0 144 
Total 93.1 85.7 89.2 5,000  

12 https://www.semanticscholar.org/product/api. We query the API using the paper id in aclanthology.org, such as K17-1003. Aclanthology holds 
not only papers published at the ACL conference but also other computational linguistics conferences and artificial intelligence conferences. 
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information extraction schema and the information need in applied artificial intelligence, i.e., from answering factual questions 
beginning with the word “what” to answering procedural questions beginning with the word “how”. Second, different from previous 
scientific information extraction works which extract entities and relations in a sequence-labeling manner, our proposed framework 
extracts metric-driven mechanisms in the form of multi-turn text generation. 

In terms of practical implications, this study has potential for creating applications to assist applied AI scientists to solve specific 
problems. Since previous information extraction schemas and methods cannot directly provide users with procedural information, 
extracting the procedural scientific information contained in scientific publications, particularly the metric-optimization information, 
can improve the efficiency of searching, reading, and using. Moreover, the mechanism extraction model presented in this paper is a 
general model, which can be easily transferred to other domains with the accordingly adjusted mechanism schema. 

Fig. 8. Figure a is the schematic of entities and relations in the NLP Mechanism KG. Figure b is the chart about the percentage of papers with metric- 
driven mechanisms in ACL conference per year. 

Fig. 9. Visualization of the operation entities. The number of clusters is set at 10.  

Table 8 
The representative operation entities for every topic.  

Topic Id Representative Entities 

1 independence of applications, long intensity of the breath segments, use of overlapping phrases 
2 Birectional Recurrent Neural Networks with LSTM cells, hierarchical recurrent neural network model, end-to-end recurrent neural network (RNN) 

models 
3 exposure bias, human bias of comment quality, meta data 
4 sequential classifier, unsupervised framework, global classifiers 
5 a probability-threshold method, a tree-based model, decoder-only architecture 
6 using the TF-IDF-weighted character n-gram model, tf-idf vectors, TF-IDF character n-grams 
7 incorporate features extracted from learned nominals and their contexts, add multilingual links between speech segments in different languages, 

leveraging multilingualism and abundant monolingual corpora 
8 back-transliteration, machine-generated questions, incorporate both document structure and PICO query formulation 
9 TALP-UPC system, UPM system, UNT HiLT+Ling system 
10 combining statistical approaches, combination of two separate encoder,Combined method  
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8.2. Conclusion 

In conclusion, we introduce a coarse-grained representation schema to express metric-driven mechanisms in the fields of AI. Our 
schema focuses on procedural scientific information related to the metric-optimization. Furthermore, we construct a dataset based on 
the papers’ abstracts in NLP domain for mechanism detection and metric-driven mechanism extraction. We propose a framework 
based on the pre-trained model to extract the metric-driven mechanism and paper task. Considering the distribution and statement 
patterns of metric-driven mechanisms, we formalize the metric-driven mechanism triple as a query-guided multi-turn text generation 
task. Based on the proposed framework, a knowledge graph of metric-driven mechanisms in NLP (MKGNLP) is constructed. Human 
evaluation shows that the extracted metric-driven mechanisms have an 81.4% accuracy. Moreover, there are 43K n-ary mechanism 
relations in the form of (Operation, Effect, Direction, Task) in our MKGNLP. Finally, the metric-driven mechanism search engine shows 
the advantage of supporting applied AI scientists to solve the domain-specific problem. 

There exist many metric-driven mechanisms in the main sections of papers, such as the results and discussion sections. In future, we 
will explore metric-driven mechanism extraction from paper’s main sections. A high-quality annotated NLP dataset in science is scarce, 
so we will explore utilizing self-supervised tasks to fine-tune the pre-trained model. Furthermore, we will also explore more appli-
cations based on the metric-driven mechanism knowledge graph. 
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S. Barro, A. Bugarín, & J. Lang (Eds.), 325. Proceedings of the ECAI 2020-24th European conference on artificial intelligence (pp. 2006–2013). IOS Press. https://doi. 
org/10.3233/FAIA200321, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29-September 8, 2020-Including 10th Conference on Prestigious 
Applications of Artificial Intelligence (PAIS 2020)Vol. 

Fan, T., & Wang, H. (2022). Research of Chinese intangible cultural heritage knowledge graph construction and attribute value extraction with graph attention 
network. Information Processing & Management, 59(1), Article 102753. https://doi.org/10.1016/j.ipm.2021.102753 

Fu, J., Huang, X., & Liu, P. (2021). SpanNER: Named entity re-/recognition as span prediction. In Proceedings of the 59th annual meeting of the association for 
computational linguistics and the 11th international joint conference on natural language processing (Volume 1: Long papers) (pp. 7183–7195). https://doi.org/ 
10.18653/v1/2021.acl-long.558 
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