
Information Processing and Management 60 (2023) 103286

A
0

A
l
F
S
I

A

K
F
A
O
S

1

T
a

f
e
d
a
s
c

a
u
t
M

h
R

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

n effective method for figures and tables detection in academic
iterature
engchang Yu, Jiani Huang, Zhuoran Luo, Li Zhang, Wei Lu ∗

chool of Information Management, Wuhan University, Wuhan, 430072, China
nstitute for Information Retrieval and Knowledge Mining, Wuhan University, Wuhan, 430072, China

R T I C L E I N F O

eywords:
igure and table detection
cademic literature
bject detection
emantic segmentation

A B S T R A C T

Figures and tables in scientific articles serve as data sources for various academic data mining
tasks. These tasks require input data to be in its entirety. However, existing studies measure the
performance of algorithms using the same IoU (Intersection over Union) or IoU-based metrics
that are used for natural situations. There is a gap between high IoU and detection entirety in
scientific figures and tables detection tasks. In this paper, we demonstrate the existence of this
gap and suggest that the leading cause is the detection error in the boundary area. We propose
an effective detection method that cascades semantic segmentation and contour detection. The
semantic segmentation model adopted a novel loss function to enhance the weights of boundary
parts and a categorized dice metric to evaluate the imbalanced pixels in the segmentation result.
Under rigorous testing criteria, the method proposed in this paper yielded a page-level F1 of
0.983 exceeding state-of-the-art academic figure and table detection methods. The research
results in this paper can significantly improve the data quality and reduce data cleaning costs
for downstream applications.

. Introduction

Figures and tables in academic literature are critical visual resources that convey the study’s primary content and crucial findings.
hey provide the foundational data for various fine-grained analysis studies on the content of academic literature. Therefore,
ccurately detecting figures and tables in academic literature is a prerequisite for all subsequent tasks.

Academic literature is published and distributed in various formats, but the most popular format is PDF, the primary distribution
ormat for the world’s five most significant volumes of publications. Thus, extracting figures and tables from the literature primarily
quals extracting them from PDF documents. Images and table contents can be easily located and extracted from structured
ocuments like MS Word and HTML. However, the PDF format is a set of print commands and lacks a layout description. Textual
nd non-textual elements are separated and stored unrelatedly, meaning commonly used vector figures are not stored as a single
tructure but as several lines and texts. Therefore, representing the textual and non-textual elements in a unified format is the major
hallenge of detecting figures and tables in PDF-format academic literature.

Heuristic-based and deep-learning-based object detection algorithms are two mainstream detection methods. Heuristic-based
lgorithms take PDF files as input and extract elements from PDF files of journal and conference papers with a similar layout. They
tilize manually constructed rules to derive feature vectors and merge them to obtain the position coordinates of the figures and
ables. This element-level method usually detects figures and tables entirely if they are detectable. However, according to Siddiqui,
alik, Agne, Dengel, and Ahmed (2018), extending to a large volume of academic literature with varying layouts is difficult because
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Fig. 1. Examples of lousy detection and sound detection in academic literature. The red rectangle denotes the ground truth bounding box and the green rectangle
denotes the predicted bounding box. Various IoU metrics are listed in Table 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
The values of IoU and derivatives for bad detection and good
detection in Fig. 1.

Bad detection Good detection

IoU 0.9247 0.8843
GIoU 0.7246 0.6898
DIoU 0.9241 0.8840
CIoU 0.9242 0.8841

of the low recall issue. Deep-learning object detection algorithms overcome the low recall shortage of heuristic-based algorithms by
automatically learning high-dimensional features. However, experiment results from considerable research, including (Chen, Lee,
Lin, Wang, & Chen, 2021; Huang et al., 2019; Saha, Mondal, & Jawahar, 2019) indicate that present models are unable to frame
the figures and tables completely.

The IoU (Intersection over Union) metrics and IoU-based metrics, such as AP and mAP, are popular evaluation metrics in
this task (Jimeno Yepes, Zhong, & Burdick, 2021). They are originally used in natural scenarios like the PASCAL VOC2007
challenge (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010) and the COCO 2017 challenge (Lin et al., 2014). The IoU is
a number from 0 to 1 that specifies the amount of overlap between the predicted and ground truth bounding box. The thresholds
of IoU are often set at 0.5, 0.7, and 0.8, and Lee and Chen (2021) points out that a prediction can be regarded as a good one if the
IoU is greater than 0.5.

We argue that evaluation standards for natural scenarios are inappropriate for this task. Because downstream applications require
input to be in its entirety, all details in scientific figures and tables matter. A typical example is that a diagram is incomprehensible
without an axis label, while a cat picture without legs is still a cat. Higher IoU does not always equal better detection. As shown in
Fig. 1, a higher IoU detection result (Fig. 1A) cuts off a part of texts in the figure, which makes this result useless for downstream
tasks. The detection result with a lower IoU (Fig. 1B) can be used for downstream tasks, though some white background area is
included. There are several derivatives of IoU, such as GIoU, DIoU, and CIoU. We listed their values for each example in Table 1.
All the results of lousy detection are greater than those of sound detection.

The main issue addressed in this paper is the following: How do we entirely detect scientific figures and tables and evaluate
detection results under downstream application requirements? This paper proposes a detection method using a cascading image
semantic segmentation model and a contour detection algorithm. A U-Net model with an attention mechanism is utilized to classify
2
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each pixel on the rendered page of an academic paper into backgrounds, figures, and tables. The classification regions are then
computed by the computer vision contour detection method to determine the position of the figures and tables. The results of our
method are compared under strict evaluation standards consistent with practical applications with state-of-the-art heuristic-based
and pure-vision object-detection-based methods.

The contributions of this paper are as follows.

1. We proposed an effective academic figure and table detection method that cascades semantic segmentation and contour
recognition.

2. We defined a boundary enhance loss function that can improve the semantic segmentation performance of figure and table
edge regions.

3. We applied the categorized dice coefficient to address the problem of pixel imbalance in the academic literature rendered
images.

The remainder of the paper is organized as follows: the second section presents the literature related to this paper, the third
ection is the introduction of the proposed method, the fourth section is the description of the experimental and discussion sections,
nd the final section is the conclusion of this paper.

. Related work

Scientific figures and tables detection is a sub-problem of document analysis and content identification, which aims to calculate
he location of figures and tables within the pages of the literature (Srihari, Lam, Govindaraju, Srihari, & Hull, 1986). As typical
isual elements, figures and tables contain significant findings and experimental results from academic research (Choudhury et al.,
013), help readers understand the research content (Lebourgeois, Bublinski, & Emptoz, 1992), and play a critical role in scholarly
ommunication and dissemination. Accurately detecting figures and tables in academic articles is vital for various visual content
tudies (Augusto Borges Oliveira & Palhares Viana, 2017; Bhatia & Mitra, 2012; Poco & Heer, 2017).

The heuristic-based algorithm, object detection, and semantic segmentation are three major detection methods. The former
ccepts PDF format files as input, parses PDF stream content, and utilizes heuristic algorithms to detect figures and tables. The
atter two take rendered document images as input and make predictions using deep learning models.

The core idea of the heuristic-based algorithm is to extract text and non-text elements from PDF streams, combine them into a
omposite object, then use elements attributes as features to categorize composite object types into figures or tables. Text element
ttributes consist of coordinates, font, color, and size. Non-textual element attributes include position, type, and shape (Perez-
rriaga, Estrada, & Abad-Mota, 2016; Ray Choudhury, Mitra, & Giles, 2015). The approach for combining and classifying objects
iffers significantly between studies. Most studies employ targeted feature engineering for particular journal and conference papers
ith similar layouts (Ajij, Pratihar, Roy, & Hanne, 2022; Corrêa & Zander, 2017; Li, Jiang, & Shatkay, 2019; Praczyk & Nogueras-

so, 2013). One of the most well-known tools is PDFFigures 2.0 (Clark & Divvala, 2016). The main advantage is that relatively
igh detection precision can be reached, and detection entirety is better than deep learning models. However, creating handcrafted
eatures is labor and time intensive, and the literature layout significantly affects detection recall.

The object detection networks are trained to directly predict the vertex coordinates of the region where the figure or table is
ound. Two-stage object detection models task into potential region proposal generation and potential region classification and
orrection. A few typical examples follow. Sun, Zhu, and Hu (2019) combined Faster R-CNN and corner location method to
etect tables in the document image. Agarwal, Mondal, and Jawahar (2021) used ResNet as the backbone of Mask R-CNN and
dopted deformable convolution instead of convolutional convolution on the table detection task. Fernandes, Simsek, Kantarci,
nd Khan (2022) used deformable convolution backbone R-CNN and a modified IoU loss function to capture tables. Single-stage
bject detection models employ regression to obtain the predefined anchor location and classification results directly from the
etwork, Huang et al. (2019) conducted anchor optimization on YOLO v3 and added two post-processing methods also on the table
etection task. Traquair, Kara, Kantarci, and Khan (2019) adopted pretrained Faster-RCNN and RetinaNet as backbone networks and
eature Pyramid Network as scale-independent feature extractors to discover tabular objects from electronic component datasheets.

The semantic segmentation methods, broadly used in historical and scanned documents, train end-to-end networks to predict
he label of every pixel in the image. Neighbor pixels with the same label are detected as figure/table instances. Studies deploying
his strategy differ in how the specific models are constructed. Shelhamer, Jonathan, and Trevor (2017) transferred pretrained
lassification networks into fully convolutional networks to make the per-pixel classification. Chen, Seuret, Liwicki, Hennebert, and
ngold (2015) used convolutional autoencoders and SVM classifiers to label pixels in the historical document into the periphery, back-
round, text block, and decoration. Augusto Borges Oliveira and Palhares Viana (2017) proposed a one-dimensional approach for
ocument layout analysis considering the text, figures, and tables based on CNN. Mechi, Mehri, Ingold, and Amara (2019) modified
-Net architecture to extract text lines from historical documents. Kavasidis et al. (2019) applied dilated convolutions in the segmen-

ation network and introduced the CRF model to enhance the prediction. Tang et al. (2022) used line segment detection and merging
lgorithms to detect the triangle coordinate diagrams. Ma et al. (2021) proposed a lightweight 𝐿−𝐸3 Net to process non-Manhattan

layout documents, and achieved 0.79 F1 on DSSE-200 dataset (200 images) and 0.70 F1 on FPD dataset (66 images). Liu, Si, Jin,
Shen, and Hu (2020) attempted to adopt instance segmentation models to detect figures and captions. Wu, Hu, Du, Yang, and He
(2021) designed Dynamic Residual Fusion Network to address training issues on limited data and got 89.5% F1 on DSSE-200. Li et al.
(2021) tried to introduce the idea of metric learning and few-shot to this task and developed a novel regularization method called
3

FS-PARN. The experimental results reached mean-IoU scores of 28.8% and 31.7% on DSSE-200 for 1-shot and 5-shot, respectively.
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A frequently reported problem was the detection error in the boundary area of figures or tables (Agarwal et al., 2021; He,
ohen, Price, Kifer, & Giles, 2017; Huang et al., 2019). This problem has an adverse effect on the performance of downstream tasks
ecause they require the input to be in its entirety. The possible reasons can be summarized in two aspects. The first comes from the
ata’s inherent characteristics. Melinda and Bhagvati (2019) suggested that because commonly seen open tables and figures have no
xplicit borders, it is difficult to detect them. The second aspect comes from the model training strategy and objectives. According
o Tychsen-Smith and Petersson (2018), most object detection methods use IoU-based loss function, and they produce a fairly precise
arget location but not an absolutely accurate bounding box. Rezatofighi et al. (2019) also indicated a disparity between optimizing
ounding box position and maximizing the IoU or its variation’s metric value, as IoU focuses on overlap areas rather than the scale.
everal studies, such as GIoU (Rezatofighi et al., 2019), Distance-IoU (Zheng et al., 2020), and Complete-IoU (Zheng et al., 2021),
ave enhanced the IoU, but they have not altered this fundamental concept.

In addition to the fact that the loss function used by the existing models is inappropriate for this scenario, the detection metrics
owadays fail to reflect this inaccuracy. In the ICDAR 2013 competition, completeness and purity were used to evaluate the detection
egion in the table detection competition. A correctly detected region was defined as one that includes all sub-objects in the GT
egion and none of the sub-objects of other objects (Göbel, Hassan, Oro, & Orsi, 2013). Due to the computational complexity of this
valuation, manual intervention is often required. With the rise in the popularity of deep learning approaches, the evaluation method
as shifted to using IoU-based metrics. For example, precision, recall, and F1 scores were calculated with several IoU thresholds in
he ICDAR 2019 competition on table detection (Gao et al., 2019). Therefore, there is a gap between the current commonly used
etection metrics and the actual requirements of downstream applications.

Based on the previous work, we propose a semantic segmentation and contour recognition cascading detection method. To
ddress the detection error in the boundary area, we defined a loss function for enhancing the figures/tables’ edges. In order to
ridge the gap between detection testing and practical application requirements, we apply appropriate metrics to evaluate detection
esults during the model training and prediction phases.

. Proposed method

.1. Workflow of the method

The most common drawback of existing methods is the detection error on the edge portion of figures/tables. The two main
easons are (a) the absence of explicit boundaries on available figures/tables and (b) the gap between IoU-based evaluation metrics
nd detection entirety. We propose an effective figure and table detection method to address these issues. This method uses a
emantic segmentation model to classify each pixel in the literature-rendered image into three classes: background, figure, and table.

loss function that assigns a higher penalty to the edge part, called Boundary Enhance Loss, is proposed to train the segmentation
odel. We also designed a novel segmentation evaluation metric called Categorized Dice efficient for the imbalance classification
roblem. This metric is used to choose the best performance model weight in the evaluation process. The detection result is given
y applying a contour detection algorithm to the segmentation result. Fig. 2 shows the workflow of the proposed method in this
aper.

.2. Segmentation model

We use Attention U-Net (Oktay et al., 2018) as the segmentation model. The model contains an encoder consisting of 4
ownsample convolution layers and a decoder consisting of 4 upsample convolution layers. Attention Gates are added to the skip
onnection to suppress irrelevant regions in the input image while highlighting salient features useful for a specific task. The model
eceives an 𝐻 ×𝑊 sized image rendered from a single page in scientific literature as input. The output is a 𝑅𝐻×𝑊 matrix indicating

the classification of each pixel inside the background, figure, or table. In this research, we maintain the network configuration in
the Attention U-Net but alter the loss function to the proposed Boundary Enhance loss. We then utilize Categorized Dice to select
the best-performing model during the evaluation stage.

3.3. Boundary enhance loss

Previous research has discovered that the model using position-independent loss functions suffered from misclassification around
the figures and tables. Inspired by Kervadec et al. (2019) and Caliva, Iriondo, Martinez, Majumdar, and Pedoia (2019), we propose
a position-related loss function called Boundary Enhance Loss to boost classification performance. It emphasizes the boundary area
by more heavily penalizing classification errors. The difference between our loss function and mentioned research is that we do
not apply a heavier penalty to a specific edge line like (Kervadec et al., 2019), nor a position-related penalty on the whole image
like (Caliva et al., 2019) but to the boundary margin of figures and tables. There are two considerations for this design. First, unlike
medical images, available figures and tables in scientific literature need more unambiguous borders, making it hard for annotators
(human or machine) to draw an exact bounding box. Second, from the perspective of downstream applications, a figure or table
input can be regarded as valid if it reaches the standard of completeness and purity defined in Göbel et al. (2013). Therefore, the
bounding box can be expanded or contracted to a certain extent. For those reasons, our loss function exclusively imposes a higher
penalty on the margin area.
4
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Fig. 2. The workflow of our method. The input is a rendered image of academic literature (Sub-figure A). The classification results are first obtained for each
pixel by the attention U-Net model (Sub-figure B). Then the contours of the figure and table area are calculated separately (Sub-figure C and D). Finally, the
vertex coordinates of the smallest bounding rectangles of both types are given as the detection result (Sub-figure E). The figure and table are shown in green
and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The Boundary Enhance Loss for each rendered image is calculated based on its annotation result. The boundary margin area
is defined by the inner and outer margins of the annotated bounding box. Two margins are calculated using a distance transform
and an inverse distance transform. These two transforms require the input image to be binary, so a render page size matrix is
constructed, and all pixels in the figure or table are set to 1 based on the annotation result, while background pixels are set to 0.
The distance transform (as described in Eq. (1)) calculates the Euclidean distance of all background pixels to the nearest pixel on
the annotated bounding box (Fabbri, Costa, Torelli, & Bruno, 2008). Additionally, the result is normalized to the image diagonal
length to remove bias induced by fluctuating image sizes. The output indicates the distance between each outside pixel and the
closest annotation boundary (as shown in Fig. 3B). In the inverse distance transform, the object and background pixel values are
inverted; the same process is conducted. The resulting matrix 𝐼𝐷𝑇 (𝐵)[𝑥], which is visualized in Fig. 3C, is used to describe the
relative distance between the inside pixel of figures and tables and the boundary.

𝐷𝑇 (𝐵)[𝑥] = min
𝑦∈𝐵

dist(𝑥, 𝑦) (1)

Where 𝑥 denotes the inside point of figures and tables (value 1), and 𝑦 denotes the points on the annotated boundary in the
input image.

A pixel-wise maximum operation (Eq. (2)) is conducted on these two matrices to combine the inner and outer margins into a
single unified one, resulting in a new boundary distance matrix (as illustrated in Fig. 3D), which defines the shortest distance from
every pixel to the annotation bounding box. To emphasize the importance of the boundary and control the margin width, elements
in the boundary distance matrix lower than 0.02 are set to 5, while the rest are assigned to 1, as shown in Fig. 3E. Then the loss
function in our model is a pixel-wise weighted cross entropy, as described in Eq. (3).

𝐵𝐸(𝐵)[𝑥] = max(𝐷𝑇 (𝐵)[𝑥], 𝐼𝐷𝑇 (𝐵)[𝑥]) (2)

𝑙𝑜𝑠𝑠 =
∑

𝑥∈𝛺
𝐵𝐸(𝐵)[𝑥] log

(

𝑃𝑙(𝑥)(𝑥)
)

(3)

3.4. Categorized dice

In order to choose the best performance model weights in the evaluation phase of different training epochs, a proper evaluation
metric is needed. A logical question is whether the loss function proposed in this paper can be used as an evaluation metric. In the
5
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Fig. 3. The boundary enhance loss calculation process.

workflow of our method, a contour detection algorithm is applied to the segmentation result to determine the position of figures
and tables. The proposed loss function evaluates classification in a position-sensitive fashion while the following contour detection
algorithm equally weights every pixel in the segmentation result. So the proposed loss function is inappropriate. A further question is
whether the Dice Coefficient is proper. The Dice Coefficient is a widely used region- and category-independent evaluation metric for
semantic segmentation. It quantifies the similarity between prediction and ground truth segments. Shamir, Duchin, Kim, Sapiro, and
Harel (2019) suggested Dice Coefficient is directly related to target structure size. The smaller the target (given a fixed resolution),
the less sensitive the Dice Coefficient is. In this task, background points occupy most images, and the figure and table areas are
relatively small. So the dice coefficient is insufficient to distinguish different errors when all pixels are evaluated indiscriminately.

We propose a category-related dice coefficient in this paper called Categorized Dice. As indicated in Eq. (4), the Categorized Dice
computes the dice coefficients for the background, figure, and table pixels separately and then linearly combines them to obtain
the global semantic segmentation evaluation. Considering the share of these three categories in the image, we set the figure, table,
and background weights as 0.4, 0.4, and 0.2, aiming to reflect the classification results of the figure and table pixels during model
training more effectively.

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝐷𝑖𝑐𝑒 =
∑

𝑐
𝛼𝑐

2 |
|

𝑋𝑐 ∩ 𝑌𝑐 ||
|

|

𝑋𝑐
|

|

+ |

|

𝑌𝑐 ||
(4)

Fig. 4 compares the Dice coefficient and Categorized Dice coefficient trends during the model evaluation phase. Because the
proportion of background pixels is substantial, the Dice coefficient is initially elevated (around 0.947) and then gradually increases
to 0.985. On the other hand, the Categorized Dice coefficient begins from a lower point (around 0.865) due to the model’s lack of
task knowledge. As training advances, the coefficients of Dice and background pixels follow a nearly identical trajectory. However,
the Categorized Dice coefficient incorporates three types of pixels. It compensates for the poor representation in Dice by assigning
greater weights to non-dominance figure-type and table-type pixels. What stands out is that when the model performs poorly for
categorizing table pixels at step 54 K, the Categorized Dice coefficient responds better to the issue than the Dice coefficient.
6
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Fig. 4. We compare the proposed Categorized Dice with the original Dice in the model evaluation. The x-coordinate is the number of training steps, and
the y-coordinate is the corresponding dice coefficient value. The first row plots the dice coefficients against the training steps calculated separately for the
background, picture, and table categories. The left side of the second row shows the result of indiscriminately computing dice coefficients for all pixels. The
right side of the second row illustrates the results of the Categorized Dice coefficients proposed in this paper, which assign higher weights to figure/table pixels
and more accurately depict the model detection performance change as training steps increase.

3.5. Localization method

A contour detection algorithm is adopted on the segmentation result to obtain the vertex coordinates of the figure and table.
We split one segmentation prediction image into separate binary images for the figure and table, so the figures and tables can
be detected separately. As seen in Fig. 2C, the separated images only consist of the white foreground (figure or table) and black
background. Noise reduction methods like expansion and erosion are utilized. Then, the canny edge detection algorithm recognizes
irregular contours of the figure and table region, as shown in Fig. 2D. Finally, the vertices coordinates of the smallest horizontal
bounding rectangle for the contours are given as the position coordinates of the detected figure or table, as shown in Fig. 2E.

4. Experiment

4.1. Dataset

The dataset used in this study consisted of 14,678 papers with figures and tables. They were randomly picked from the PubMed
Open Access database. Figures are more prevalent than tables in the medical literature. According to our statistics, the number of
figures outnumbers the number of tables by a factor of 6.5. To address the data imbalance issue in the PubMed OA dataset, we
included 2966 randomly selected annotated data from the TableBank dataset (Li, Cui, et al., 2019).

An individual article package in the PubMed OA dataset includes metadata in XML, the article PDF, and the media files. A data
annotation method similar to Siegel, Lourie, Power, and Ammar (2018) was applied. However, we used a SIFT-based image feature
matching algorithm on the figure/table image files and PDF-rendered images, rather than the pyramid template matching algorithm
in the original paper, for higher annotation accuracy. All annotated data was manually checked to ensure the training material fed
to the proposed model was correct. The annotated data was partitioned into the training, validation, and test sets of images: 24,045,
4517, and 4517, respectively.

4.2. Experimental details

The experiment was conducted in the PyTorch 1.7.1 environment with an NVIDIA GeForce RTX 3090Ti GPU. All PDF literature
was rendered into 400 × 320 pixels images page by page. Annotation results were saved as vertex coordinates and their types. They
were converted to the form required by the proposed and compared models.

In the training process of the proposed method, the Attention U-net network was randomly initialized, and the mini-batch was
set to 4. An RMSprop optimizer with a learning rate of 0.0001 and weight decay of 10−8 was used. We have trained our model for 10
epochs. A validation test on the validation set was conducted, and the best-performance weight was saved for every 1000 iterations.
7
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Table 2
Evaluation of the boundary enhance loss and categorized dice
proposed in this research.
Method mAP IoU = 0.9 mAP IoU = 0.95

UNet 0.717 0.473
UNet+B 0.718 0.491
UNet+C 0.704 0.475
UNet+B+C 0.745 0.508

The loss functions were Cross Entropy Loss and proposed Boundary Enhance Loss. Validation metrics were the Dice coefficient and
proposed Categorized Dice.

4.3. Evaluation standard and metric

As previously stated, there is a gap between the IoU-based metric and downstream application requirements, like Fig. 1B. It is
articularly true when the IoU threshold values in earlier research were set to 0.5 and 0.8. Unless the IoU threshold is set to 1.0,
ncreasing it does not ensure the purity and completeness of prediction results. So IoU or IoU-based AP and mAP are not suitable
s the primary metrics to test the model’s performance for downstream application scenarios.

In this experiment, apart from IoU or mAP, we adopt page-level precision, recall, and F1 metric to evaluate the performance
f different algorithms. A detection for an individual page is considered correct when all object-level predictions on that page are
alid. This page will be considered incorrect or missing if any object detection is invalid or not detected. An object-level prediction
s valid when it satisfies completeness and purity. The standard of completeness and purity were defined in Göbel et al. (2013). We
ecall them for convenience. An object prediction is classified as complete if it includes all sub-objects in the GT region. An object
rediction is classified as pure if it does not include any sub-objects which are not also in the GT region. The completeness and
urity are checked manually.

The reason for using page-level instead of figure/table-level like in previous studies is to follow the practical application standard.
ecause in a real-world application, if a detection error occurs on one page, the page must be manually rediscovered, and the figure
r table on it must be manually located. To simulate this usage scenario, we adopt this rigorous evaluation criterion.

.4. Ablation experiment

To validate the impacts of the Boundary Enhance loss and Categorized Dice proposed in this study, we compare the original
ttention U-Net model with the model containing both. The mean average precision under two IoU thresholds (0.9 and 0.95) is

ested on the test set data (described in Section 4.1) with four different model setups.
In Table 2, +C denotes the addition of Categorized Dice, whereas +B denotes the addition of Boundary Enhance Loss. The

esults in Table 2 demonstrate that utilizing Categorized Dice or Boundary Enhance loss alone has a minimal effect on the
odel performance of high-precision figure and table detection. However, incorporating both into the Attention U-Net model can

onsiderably enhance the performance of our method. Subsequent comparison tests will incorporate the experimental data obtained
nder this paradigm.

We also compare segmentation results from Attention U-Net with different loss functions to clearly observe the effect of the
oundary Enhance loss function. In Fig. 5, pixels between two adjacent figures are mistakenly classified under the Cross-Entropy

oss function. While in the prediction under the proposed Boundary Enhance loss function, two figure areas are correctly separated.

.5. Comparing experiment

We compare the performance of the proposed method to the state-of-the-art figure and table detection algorithms in a real-world
igure and table detection scenario. Comparing approaches include a heuristic-based algorithm PDFFigures 2.0 (Clark & Divvala,
016), a single-stage object detection algorithm YOLO v3 (Huang et al., 2019), and a two-stage object detection algorithm Faster
CNN (Sun et al., 2019). We use four algorithms to predict the locations of figures and tables on the test set data (described in
ection 4.1) and calculate the corresponding mAP and page-level metrics (described in Section 4.3).

The training details are as follows. For YOLO v3, the Adam optimizer with a learning rate of 0.001 is adopted. Input images
ere resized to 416 × 416. The batch size was set to 16 for 100 epochs. For Faster RCNN, the SGD optimizer with a learning rate
f 0.001, a momentum of 0.9, and a weight decay of 0.0005 was applied. Input images were resized to a random width and height
etween 600 to 1000. The batch size was set to 1 for 14 epochs. Both use the dataset in Section 4.1 and are trained from scratch.

Table 3 reports the results of four methods on mAP metric at different IoU thresholds, which is the evaluation metric in most
imilar studies. Table 4 shows the page-level statistics results of the four methods. The standard of correct, incorrect, and missing
re defined in Section 4.3. The total number of PDFFigures 2.0 is less than others because it accepted PDF files as input, and 315
DF pages were identified as invalid input by the program. Of the 4202 valid inputs, no detection was reported on 1344 PDF
ages. The results in the table are for the rest of the 2858 pages we manually checked. One page cannot be handled in YOLO.
orresponding page-level precision, recall, and F1 are shown in Table 5. It should be noted that the results of PDFFigures 2.0 are
8

alculated excluding the 315 unprocessable inputs.
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Fig. 5. A segmentation result comparison between models with different loss functions.

Table 3
Detection results on mAP metrics under different IoU thresholds.
Method mAP IoU = 0.5 mAP IoU = 0.75 mAP IoU = 0.9 mAP 0.5:0.95

PDFFigures 2.0 0.457 0.457 0.417 0.332
Faster RCNN 0.953 0.821 0.325 0.711
YOLO v3 0.969 0.914 0.359 0.764
Ours 0.913 0.863 0.745 0.824

Table 4
Statistics of results calculated at page level for different algorithms under
practical application criteria.
Method Correct Incorrect Missing

PDFFigures 2.0 2726 63 69
Faster RCNN 4032 484 1
YOLO v3 3258 968 290
Ours 4422 77 18

Table 5
Performance comparison of different algorithms under practical application
criteria.
Method Precision Recall F1

PDFFigures 2.0 0.954 0.649 0.772
Faster RCNN 0.893 0.893 0.893
YOLO v3 0.771 0.721 0.745
Ours 0.983 0.983 0.983

4.6. Discussion

Gap between IoU and detection entirety Comparing Tables 3 and 5, one can notice the gap between IoU-based metrics and
actual application criteria. In Table 3, the IoU threshold influences the performance ranking. In contrast, the performance of the
proposed method in real-world circumstances is significantly superior to comparative methods. What is interesting about the data
in this table is that YOLO v3 outperforms Faster R-CNN in the mAP metric at all IoU thresholds. However, it is inferior to Faster
R-CNN in practical applications. YOLO v3 and PDFFigures 2.0 meets a comparable conclusion. Consequently, IoU-based metrics
alone are inadequate for comparing the performance of different models in downstream applications.

Effectiveness of proposed method In large-scale data testing, as shown in Table 3, two object detection methods outperform
our method and PDFFigures at lower IoU thresholds (0.5 and 0.75) which are the test condition in most similar studies. However,
they drop dramatically in a high detection accuracy condition (IoU = 0.9), which is consistent with the problems reported in several
papers. Meanwhile, our method remains high across different IoU thresholds and has a significant advantage in high IoU threshold,
indicating that our detection results have better completeness. The page-level results in Table 5 demonstrates that proposed method
can produce excellent results under rigorous practical application criteria. The F1 value of 0.983 at the page level indicates that
labor and time expenses associated with data cleaning can be decreased significantly in real applications.
9
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Fig. 6. The comparison of the four algorithms results on one literature page. The green bounding boxes denote detection results. The red rectangles denote the
cut-off errors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The main problem with the two object detection algorithms is their inaccuracy in detecting the figure or table boundary regions,
which is consistent with the issues reported in prior studies. Fig. 6 is a typical example of the four methods. YOLO v3 and Faster
R-CNN miss several letters at the figure’s edge, preventing downstream applications from utilizing the detection result. The proposed
method achieves a good classification in the edge region so that all figure contents are ultimately included in the result region. The
segmentation results show that the three edges of the figure are smooth, and the region without content on the right side is also
precisely excluded. This demonstrates the efficacy of the proposed Boundary Enhance Loss, and the segmentation model can identify
the content region. One may wonder why the non-content regions in Fig. 5 are not excluded. This is because the area of the figure in
Fig. 5 is small. In contrast, the area of the figure in Fig. 6 is much larger, demonstrating that the model has learned the characteristics
of the spatial distribution of academic figure content at various scales.

Shortcoming of proposed method Although the detection result of proposed method meet the purity and completeness
standard, the accuracy can still be improved. The detection result of PDFFigures 2.0 is even more precise than our model if one
zooms in to measure the distance between the bounding box and letter ‘‘A’’ on the left top in Fig. 6. A possible explanation for this
10
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might be that we set a fixed 2% margin width on the Boundary Enhance loss, so the ground truth in training data could be more
accurate. On the other hand, the input of the heuristic algorithm is the accurate position of all elements.

Other Observations When further looking at Table 5, we can find that even under rigorous criteria, the heuristic-based algorithm
as a relatively good detection precision but suffers from low recall. It can also be beneficial for data cleaning of the downstream
pplications. Because the program proactively reports most detection errors, time is saved in testing them individually. In addition,
his is a clear example demonstrating that literature publications follow specific design rules, and using PDF files as input can be
eneficial. Three deep learning methods reach higher recall than the heuristic one, indicating better generalization ability of the
eep learning methods.

. Conclusion and future work

This paper theoretically and experimentally demonstrates a gap between widely used IoU-based detection metrics and the
ownstream application standard of figure and table detection in academic literature. An academic figure and table detection method
hat cascades semantic segmentation and contour detection is proposed. Boundary Enhance loss and Categorized Dice are proposed to
ddress the detection issue of existing algorithms at the boundary region. In the experiment under rigorous criteria for downstream
ractical applications, the proposed method outperforms existing algorithms by a significant margin and reaches a page-level of
.9833 F1. Our work can provide high-quality input for downstream applications and reduce the workload of data cleaning.

There are limitations of our study. First, the manual examination was applied in the experiment to check the purity and
ompleteness of detection prediction, which was labor and time intensive. Second, the margin width of the proposed Boundary
nhance loss function is set to a fixed 2% of the diagonal length because the positions of neighbor elements are unknown. In future
tudies of layout analysis, detection types will be expanded to all element types on the page. Then the purity and completeness
an be calculated automatically based on the positions of neighbor elements. Moreover, the margin width can be set dynamically,
hich is expected to improve the robustness of the model.
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