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Abstract

Each section header of an article has its distinct communicative function. Cita-

tions from distinct sections may be different regarding citing motivation. In

this paper, we grouped section headers with similar functions as a structural

function and defined the distribution of citations from structural functions for

a paper as its citation structure. We aim to explore the relationship between

citation structure and the future impact of a publication and disclose the rela-

tive importance among citations from different structural functions. Specifi-

cally, we proposed two citation counting methods and a citation life cycle

identification method, by which the regression data were built. Subsequently,

we employed a ridge regression model to predict the future impact of the paper

and analyzed the relative weights of regressors. Based on documents collected

from the Association for Computational Linguistics Anthology website, our

empirical experiments disclosed that functional structure features improve the

prediction accuracy of citation count prediction and that there exist differences

among citations from different structural functions. Specifically, at the early

stage of citation lifetime, citations from Introduction and Method are particu-

larly important for perceiving future impact of papers, and citations from

Result and Conclusion are also vital. However, early accumulation of citations

from the Background seems less important.

1 | INTRODUCTION

Citation count is considered to be one of the commonly
used metrics for measuring the impact of research out-
come (Abrishami & Aliakbary, 2019; Bai et al., 2019;
Oppenheim, 1995; Yu et al., 2014). However, citations are
not equally important (Ding et al., 2013, 2014; Hu
et al., 2013; Zhu et al., 2015), and some studies have con-
firmed that references listed in the bibliography of a
paper generally make different contributions to that
paper (Ding et al., 2013; Hou et al., 2011; Thelwall, 2019;

Valenzuela et al., 2015; Wan & Liu, 2014). Exploring
inherent differences among citations may help re-
searchers better understand citation behavior, figure out
an author's citation motivation, go deep into the citing
process, and therefore, establish an effective scientific
evaluation system.

With the open access of academic papers, researchers
can easily obtain a large number of full-text scientific
documents (Boyack et al., 2018; Lu et al., 2018;
Thelwall, 2019), which makes content-based citation
analysis possible. Content-based citation analysis focuses
on revealing inherent differences among citations based
on citation contexts. Previous research on content-basedShengzhi Huang and Jiajia Qian contributed equally to this work.
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citation analysis generally focused on analyzing citation
distribution by section or overlap of citations among sec-
tions (Bertin, Atanassova, Gingras, & Larivière, 2016;
Ding et al., 2013; Hu et al., 2013; Thelwall, 2019; Voos &
Dagaev, 1976). However, the implicit relationship
between the accumulation of citations from different cita-
tion locations and future impact of papers is still unclear.

Full-text scientific documents provide not only cita-
tion context information, but also fine-grained in-text
citation counting information (Ding et al., 2014; Zhao &
Strotmann, 2016). The sections of papers are arranged to
clearly demonstrate the papers' topics, and each has its
own distinct communicative function (Lu et al., 2018;
Zhang, 2012). Lu et al. (2018) defined a group of
section headers with a similar communicative function
as a structural function, and all of the structural func-
tions together constitute the functional structure in a spe-
cific field. Ding et al. (2013) and Pak et al. (2020) put
forward different in-text citation counting methods, and
confirmed that in-text citation count reveals the differ-
ence in importance among references. In this paper, we
define the distribution of citations from structural func-
tions for a paper as its citation structure. We used a real
case from our collected data to clearly clarify what is cita-
tion structure and our research issue. As shown in
Figure 1, two sample papers both acquired 15 citations
5 years after publication, and their citation structures in
the fifth year are presented in bar charts. However, the
citation structure of α and β are obviously different, and
their citations are highly concentrated in Method and
Background, respectively. We found that α and β possess
different long-term impact despite their equal early
impact. In effect, citations from different structural func-
tions of a paper may indicate distinct citing motivations,
and the citation structure of a paper may reflect the focus
of the paper. For example, paper α cited frequently in

Method is likely to be a methodology-oriented paper, and
therefore, is cited later by papers using its methodology.
Therefore, the early accumulation of citations from dif-
ferent structural functions may have different impact on
future impact of a publication. The purpose of this study
is to explore the relationship between citation structure
and future impact of a publication, and identify the rela-
tive importance among in-text citations from different
structural functions.

In this paper, we collected the full-text documents
from the Association for Computational Linguistics
(ACL) Anthology website as the data source (hereafter,
ACL dataset) and identified the structural functions in
the ACL dataset. After that, to count citations from differ-
ent structural functions (i.e., citation structure), we
extended the in-text citation counting methods presented
by Pak et al. (2020). The extended method counts citation
frequency from each structural function separately, while
keeping the total citation frequency equal to that calcu-
lated by the original method. Moreover, considering the
fact that citation trajectories and citation peaks for papers
vary considerably (i.e., the effect of citation life cycle)
(J. Wang, 2013; D. Wang et al., 2013), we also proposed a
citation life cycle identification method based on corol-
lary presented by D. Wang et al. (2013). Compared with a
fixed citation time window for all papers, our method
identifies the different stages of citation life cycle of a
paper according to its citation trajectory, and enables to
control the influence of time factor in our model. Subse-
quently, we utilized the citation distribution partition
algorithm proposed by Huang et al. (2020) to identify the
highly cited papers as the research object. We employed
citation count to measure the scientific impact of a paper
and used a ridge regression model, which to some extent
solve the colinearity problem inevitably encountered in
our study, to predict the future impact of a paper. Finally,
relative weights of regressors in the ridge model are
analyzed.

This study has the following contributions. First, it
gives researchers some insight into the relationship
between citation structure and future impact of a publica-
tion by the perspective of citation count prediction,
which might contribute to building up an efficient
research evaluation system. Specifically, the empirical
experiments reveal that: (1) the functional structure fea-
ture can obviously improve the prediction accuracy of
citation count prediction; and (2) there exist differences
among in-text citations from different structural func-
tions. Second, the extended in-text citation counting
methods may also be utilized in other research, which
analyzes in-text citation count from different structural
functions or sections. Third, we derived a citation life
cycle identification method, which could figure out the

FIGURE 1 A real case for clarifying citation structure and our

research issue
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time consumed for an individual paper to reach a certain
ratio of its ultimate impact. This method may also be
used in research involving the citation life cycle of
papers.

The rest of the paper is organized as follows. In
Section 2, we review the recent studies. In Section 3, we
clarify the definition of research issues and methods uti-
lized in this research. In Section 4, we give a detailed
description of data collection and preprocessing. In
Section 5, we provide the experimental setup and analysis
of the empirical results. In Section 6, we discuss the con-
tributions and limitations of this study. In Section 7, we
summarize our research work.

2 | BACKGROUND

2.1 | Content-based citation analysis

In this study, we refer to citation analysis, which treats
all citations with equal weight as traditional citation
analysis, and citation analysis, which focuses on reveal-
ing inherent differences among citations based on cita-
tion contexts as content-based citation analysis.

Traditional citation analysis has been criticized for its
weak basic theory on citation, unclear citing motivation,
and inadequate citing process (Hjørland, 2013; Yang &
Han, 2015). With the increasing accessibility of full-text
documents, scholars are focusing on analyzing citation
contexts in order to explore the wide variety of functions
that citations perform. Many studies have confirmed the
value of content-based citation analysis (Boyack
et al., 2018; Hooten, 1991; Hou et al., 2011). Content-
based citation analysis can be roughly divided into
semantic content-based citation analysis and syntactic
content-based citation analysis (Ding et al., 2013, 2014).

Semantic content-based citation analysis generally
utilizes natural language processing technology and
machine learning technology to explore the difference
among citations. Teufel et al. (2006) defined the author's
reason for citing a paper as the citation function, and pro-
posed a citation function annotation schema. They pres-
ented a supervised machine learning framework with
linguistically inspired features to classify citation func-
tions. Small (2011) analyzed citation sentiments by con-
trasting the appearance of sentiment-bearing terms in
citation contexts and the cue word sets. Zhu et al. (2015)
created a dataset in which 10.3% of the references of
100 papers were manually labeled as influential refer-
ences. They proposed a variety of features (e.g., context-
based features and similarity-based features), and utilized
support vector machines (SVMs) to classify references.
Aljuaid et al. (2021) identified in-text citation sentiment,

and used a series of machine learning algorithms to clas-
sify citations into binary classes (i.e., important and non-
important). Liu and Chen (2021) proposed triangular
citation structure, and identified high citation similarity
in the citation contexts of triangular citation by text-
similarity algorithm, which indicates a lazy citation
motivation.

Scientific papers need to be structured to deliver their
message persuasively (Thelwall, 2019), and many
researchers focus on syntactic content-based citation
analysis. Lu et al. (2018) presented the definition of struc-
tural function and functional structure, and proposed
three widely applicable functional structure identification
algorithms. Hu et al. (2013) visualized the distribution of
citations in 350 papers published in the Journal of
Informetrics with a four-section structure. They demon-
strated that citations are highly concentrated in the first
section of a paper. Ding et al. (2013) examined citation
location and revealed that highly cited papers were more
likely to appear in the introduction and literature review
sections of citing papers. Wan and Liu (2014) manually
divided the citation strength value of each citation of
40 papers into five levels, and employed regression
method with a variety of features (e.g., in-text citation
count, located section, etc.) to classify citation strength
value. Bertin, Atanassova, Gingras, and Larivière (2016)
investigated 45,000 papers published in the Public
Library of Science journal families, and found that the
introduction and discussion sections contained most of
the references. Thelwall (2019) analyzed citation distribu-
tion by section and the overlap of citations among sec-
tions in 799,055 PubMed Central open access articles.
They argued that section headers are not reliable as indi-
cators of citation function in lowly cited articles.

In this study, we employed the definition of structural
function and functional structure proposed by Lu
et al. (2018). In short, each structural function represents
a group of section headers with similar communicative
functions, and functional structure is a terminology
describing the set composed of all structural functions.
The goal of this study is to explore the relationship
between citation structure and future impact of a paper.
Hence, this study belongs to the study of syntactic
content-based citation analysis. However, unlike previous
studies, this paper stands on the perspective of citation
count prediction and tries to discover the relative impor-
tance of citations from different structural functions.

2.2 | Citation count prediction

The accumulation of citations consumes time (Fu &
Aliferis, 2010). Various studies focus on predicting

HUANG ET AL. 3



citation count, which may measure the impact of a paper,
researcher, and organization in a timely fashion.

For a long time, statistical methods have been uti-
lized to analyze and predict citation count of a paper.
For instance, Burrell (2002) used the Poisson process to
confirm that the longer a paper is not cited, the less
likely it will be cited in the future. Burrell (2003) also
employed a similar model to predict the citation count
of a paper and showed that the expected number of
future citations is a linear function of the current cita-
tion frequency. Adams (2005) found a strong correla-
tion between the ranking lists for publications in the
life and physical sciences ranked by early citations and
those ranked by later citations, and concluded that
early citations (1–2 years) are statistically a good proxy
for predicting the long-term impact of a paper. Brody
et al. (2006) examined the arXiv.org e-print archive,
and found a positive correlation (about 0.4) between
the number of times an article is downloaded and its
later citation count. D. Wang et al. (2013) proposed a
differential equation model (WSB) to fit the citation
trajectories of papers from different journals and disci-
plines. The WSB model was observed to effectively esti-
mate ultimate citations frequency of a paper. Based on
inherent quality of papers, citation life cycle, early cita-
tions, and early citers' impact, Bai et al. (2019) pro-
posed a paper potential index model, which achieves
satisfactory predictive performance on 183,336 papers
from American Physical Society dataset.

Machine learning algorithms have also been widely
utilized in citation count prediction. For example, Fu and
Aliferis (2010) utilized content-based and bibliometric
features of a paper to predict its citation count by SVMs.
Yu et al. (2014) presented paper features, journal fea-
tures, author features, and citation features of papers,
and utilized stepwise multiple regression to predict cita-
tions of a paper after 5 years of publication. Onodera and
Yoshikane (2015) also proposed various extrinsic factors
of a paper, and utilized negative binomial multiple
regression to predict citation frequency. Their experi-
ments showed that the proportion of references within
3 and 5 years and number of references are the most
important features. Abramo et al. (2019) analyzed the
importance of a publication's early citations and the
impact factor of the hosting journal in citation count pre-
diction by two linear models. Their experimental results
disclosed that a citation time window of 3 years can
achieve acceptable accuracy in predicting the long-term
impact of publications, and the impact factor (i.e., the
impact factor becomes negligible only 2 years after publi-
cation). Toubia et al. (2021) proposed three metrics (speed,
volume, and circuitousness) to quantify the semantic pro-
gression of texts, and confirmed that these metrics have a

significant impact on the long-term impact of a paper by a
least absolute shrinkage and selection operator (Lasso)
regression. In addition, deep learning algorithms have also
achieved fruitful results in citation count prediction.
Abrishami and Aliakbary (2019) employed early citations
(3–5 years) of the paper to predict its long-term impact on
the recurrent neural network. The empirical experiments
based on 175,432 papers from five journals showed that
their model achieves state-of-the-art results. Ruan
et al. (2020) employed paper features, journal features,
author features, reference features, and early citation fea-
tures as input variables, and used a feedforward neural
network to predict the citations of a paper after 5 years of
publication. Their model achieved satisfactory predictive
performances on about 50 K papers in the library, infor-
mation, and documentation field. Akella et al. (2021) used
altmetrics (e.g., social media features) to predict early and
long-term citations of a paper. After comparing various
models, they found that neural networks and ensemble
models performed best in term of F1 scores for their tasks.

The citation peaks for papers vary considerably and
citation time window length does play a very important
role in citation analysis (J. Wang, 2013; D. Wang
et al., 2013). In this study, we assumed that the relation-
ship between citation structure and future impact of a
paper may evolve over time. Unlike previous studies,
which set a unified time window for all papers, we
derived a citation life cycle identification method based
on corollary presented by D. Wang et al. (2013) to control
the influence of time factor in our modeling. Subse-
quently, we employed the linear model to explore the
relationship between citation structure and future impact
of a publication.

3 | METHOD

3.1 | Problem definition

In this paper, we aim to reveal the relationship between
citation structure and future impact of a publication, and
figure out the inherent difference among in-text citations
from different structural functions. Specifically, we
employed citation count to measure the impact of a paper.
We used a linear model to analyze the relationship between
the accumulation of citations from different structural func-
tions in the top r1% of citation life cycle (i.e., XI

tr1%
) and

the impact of a paper in top r2% of citation life cycle
(i.e., ytr2%), where r2 > r1. In the following text, we explain
the key concepts and steps for this study step by step, and
the overall research framework can be found in Figure 2.

First, we followed the definition of structural func-
tions and functional structure (Lu et al., 2018). To be
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specific, we denoted a type of structural function, which
defines the roles of sections in conveying the ideas of
authors as i, and functional structure, which is comprised
of a variety of structural functions as I. That is to say, i∈I.
As shown in the left of Figure 2, we utilized functional
structure identification methods and a text classification
algorithm to identify five structural functions in the ACL
dataset.

Second, we extended two in-text citation counting
methods proposed by Pak et al. (2020), in order to make
them suitable for separately counting in-text citations
from different structural functions. After the directed
citation relationship between the cited paper and the
citing paper in the ACL dataset is built, these extended
in-text citation counting methods are utilized to count
citation frequency for papers.

Third, the accumulation of citations of papers
increases unevenly over time and presents different cita-
tion trajectories (Avramescu, 1979; Bai et al., 2019;
Mingers & Burrell, 2006; D. Wang et al., 2013). To control
the influence of citation life cycle in our modeling, we
derived a citation life cycle identification method, which
can calculate the time, tr%, consumed for a paper to reach
r% of its ultimate number of citations, as shown in the
middle of Figure 2. This citation life cycle identification
method is adopted to specify time window for papers in
citation count prediction.

Finally, we employed in-text citation count of a
paper, α, at time, tr1%, from different structural functions

(XI
tr1%

) to predict total in-text citation count of α at tr2%

(i.e., ytr2%), as shown in the right of Figure 2. Therefore,

the current research issue turns into citation count pre-
diction, which is fundamentally a fitting regression task.
Our goal is to find the functional relationship,

ytr2% ¼ f XI
tr1%

,w1,w2,…,wI

� �
:. It is worth noting that we

limited the inputs to in-text citation count from different
structural functions at tr1% (independent variables) and
time (control variable), to keep the problem definition
simple and general. Previous studies show that a linear
model is an effective method for citation count prediction
and feature selection analysis (Abramo et al., 2019;
Djokoto et al., 2020; Jimenez et al., 2020; Yu et al., 2014).
Therefore, we employed a linear model and analyzed the
relative weights of regressors (i.e., wi), which quantitively
gauges the effect of independent variables on the depen-
dent variable. Thus, the relative weights of regressors dis-
close the relative significance among citations from
different structural functions. However, there may exist
some correlation among citations from different structural
functions for a paper, which may result in colinearity in our
regression equations. For instance, Introduction citations
tend to be cited within Background (Thelwall, 2019).
Hence, the ridge regression model and the Lasso model,
which are more suitable for problematic data than tradi-
tional ordinary least squares regression model, are great
choices. Considering Lasso is more suitable for feature
selection and obtaining zero weight of regressors, which is
inconsistent with our original intention, the ridge regression
model was employed in this study.

FIGURE 2 Overview of the key steps for this study
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3.2 | In-text citation counting methods

A citation sentence may be supported by an in-text citation
of only one reference or an in-text citation of multiple refer-
ences. Pak et al. (2020) proposed the definition of indepen-
dent mention and nonindependent mention, where the
former indicates that one reference is mentioned indepen-
dently, while the latter means one reference is mentioned
with other references in a citation sentence. They also pro-
posed the full counting method as well as the fractional
counting method. In this study, we extended the two in-text
citation counting methods mentioned above, in order to
make them suitable for separately counting in-text citation
count from different structural functions. The formulas for
the two extended in-text counting methods are as follows.

Cα
full tð Þ¼

X
β∈Aα tð Þ

X
i∈I

Xnαβi
j¼1

1 ð1Þ

Cα
frac tð Þ¼

X
β∈Aα tð Þ

X
i∈I

Xnαβi
j¼1

wαβ
ij ð2Þ

Cα
full tð Þ and Cα

frac tð Þ denote in-text citation count of a
paper, α, at time, t, in full counting method and frac-
tional counting method, respectively. Aα tð Þ indicates a
collection of citing papers that have cited α at t. I repre-
sents functional structure in the specific domain. nαβi
denotes how many times a citing paper, β, mentioned α
in a structural function, i. In the full counting, the men-
tion weight, wαβ

ij , is equal to 1. In the fractional counting,
wαβ
ij is the inverse of the number of references in a

citation sentence. In addition, we denote Cα t, ið Þ¼P
β∈Aα tð Þ

Pnαβi
j¼1w

αβ
ij , which represents in-text citation

count from i acquired by α at t. Therefore, we
have Cα tð Þ¼P

i∈IC
α t, ið Þ.

To facilitate understanding of Equations (1) and (2),
we present a simple case. As shown in Figure 3, there are
only two citing papers (B, C) and two cited papers (A, D),
and arrows indicate directed citation relationships similar
to Figure 2, where A was mentioned independently three
times in three citation sentences of B, and A and D were
simultaneously mentioned one time in one citation sen-
tence of C. Therefore, CA

full, C
D
full, C

A
frac, and CD

frac are 4, 1,
7/2, and 1/2 in turn. Under the assumption of I¼ i1, i2f g,
Cα
full t, ið Þ and Cα

frac t, ið Þ can be separately calculated in
each i, and keep the left equal to the sum of the right.

3.3 | Citation life cycle identification
method

In this research, we derived a citation life cycle identifica-
tion method based on the corollary of the citation model
proposed by D. Wang et al. (2013). Before introducing
our citation life cycle identification method, we briefly
reviewed the citation model (hereafter, WSB).

The WSB model describes the citation trajectory of
papers from different journals and disciplines in a uni-
form form, and its mathematical formula is as follows,
Equation (3).

Cα
WSB tð Þ¼m eλαϕ

lnt�μα
σαð Þ �1

� �
ð3Þ

ϕ xð Þ¼ 2πð Þ�1=2
R x

�∞
e�y2=2

dy ð4Þ

Cα
WSB tð Þ represents accumulative citations of a paper, α,

at time, t. m indicates the initial attraction of a new paper
and can be measured by the average number of refer-
ences that each paper contains. They employed a

FIGURE 3 Examples for

the two in-text citation counting

methods
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lognormal survival probability to depict the obsolescence
of papers, as shown in Equation (4). μα denotes immedi-
acy, controlling the time for α to reach its citation peak;
and σα is longevity, gauging the decay rate of α. λα mea-
sures the quality of α.

D. Wang et al. (2013) also derived ultimate impact, c∞α ,
and impact time, t50%, of α. More specifically, when
t!∞, ϕ! 1. c∞α represents the ultimate citation count
that α acquires during its citation lifetime, as shown in
Equation (5). t50% is the time consumed for α to reach geo-
metric mean of c∞α , and can be derived from
Equation (6).

Cα
WSB ∞ð Þ¼m eλα �1

� � ð5Þ

m mþCα ∞ð Þð Þð Þ12 ¼Cα
WSB t50%ð Þ ð6Þ

t50% is determined by the citation trajectory of each
individual paper and is not necessarily the same in
different papers. The merit of t50% allows us to deter-
mine the middle stage of the citation life cycle of each
paper.

To identify different stages of the citation life cycle,
we extended Equation (6). Specifically, we simply rep-
laced the exponent of the left side of Equation (6)
(i.e., 1/2) with any value between 0 and 1 (i.e., r%), and
obtained Equation (7). The solution of Equation (7), tr%,
indicates the time necessary for a paper to reach r% of its
ultimate citations. To ensure the solvability and simplify
the computing process of Equation (7), we retained the
assumption presented by D. Wang et al. (2013)
(i.e., exp λαϕð Þ� 1) and simplified m to 1. Finally,
Equation (7) is simplified as Equation (8). The numerical
solution of Equation (8) can be easily obtained and is
only decided by μα and σα of a paper. Compared with a
fixed time window for all papers, our method aims to
eliminate the impact of citation life cycle in our subse-
quent regression analysis.

m mþCα
WSB ∞ð Þ� �� �r% ¼Cα

WSB tr%ð Þ ð7Þ

r%¼ϕ
lntr%�μα

σα

� �
ð8Þ

FIGURE 4 Citation life cycle identification results of four sample papers. (a) Two cases in the full counting method. (b) Two cases in

the fractional counting method
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For easy understanding, we randomly selected four sam-
ple papers to clarify our proposed method. As shown in
Figure 4, the x-axis starts with the time when a paper is first
cited. The black curve is the actual citation trajectory of a
paper, and the red curve is the fitting result of WSB. The
fitting parameters of WSB are listed in the lower right corner
of each sub-figure. In line with our above view, tr% of each
paper is not necessarily the same. For example, in
Figure 3A, t60% of two papers is about 9 and 30, respec-
tively. In addition, because geometric mean is used in
Equation (7), the blue vertical lines, which denote tr% of
the paper, are not evenly distributed. Notably, due to the
boundary effect of data collection, only the paper on the left
sub-figure of Figure 4a reached 80% of its ultimate citations.

3.4 | Prediction model

Considering that there may be some correlation among cita-
tions from different structural functions, we employed ridge
regression model to fulfill citation count prediction.

ŷα ¼
XI

i¼1
wix

α
i þbtþ c ð9Þ

loss¼ 1
N

XN

α¼1
yα� ŷαð Þ2þλ

XI

i¼1
w2
i ð10Þ

As shown in Equations (9) and (10), the independent var-
iable, xαi , indicates the accumulation of in-text citations of
a paper, α, at time, t1, from a structural function, i
(i.e., Cα t1, ið Þ). t is the difference between t1 and a fixed
time point, t0, and is a control variable. The dependent
variable, yα, is the total in-text citation count of α at time,
t2, where t2 > t1. ŷα indicates the predicted value. λ is a
ridge regression parameter and N denotes the number of
samples.

As we mentioned earlier, Equation (8) was utilized to
determine t1 and t2 in linear regression analysis for each
paper. To be more specific, we set t2 as tr2% and t1 as tr1%,
where r2%> r1%. Subsequently, we obtained the follow-
ing input–output data pairs, Xtr1%

x1,x2…,xIð Þ,ytr2% .
In order to evaluate the prediction performance com-

prehensively, we also simplified the independent variable
to conduct control experiments as a baseline. More spe-
cifically, xαi is simplified as zα, which represents total in-
text citation count acquired at tr1% (i.e., zα ¼PI

i¼1x
α
i ). In

a few words, the experimental group utilized the func-
tional structure feature, while the control group did not.

4 | DATA

We collected PDF versions of full-text documents from
the ACL Anthology website from 1965 to 2020,

comprising 59,133 papers. These collected PDF files were
parsed by using the Grobid toolkit. In the process of pars-
ing the PDF files, the metadata of some articles was lost,
we removed these cases and 52,540 papers remained.
After that, we extracted the papers' reference lists and
citation contexts. We obtained 1,174,413 references and
1,440,200 pieces of citation context data. Finally, we de-
duplicated the 52,540 papers indexed in the ACL Anthol-
ogy website and 1,174,413 references according to the
title, authors, and publication year of the articles, and
obtained 290,937 unique papers.

4.1 | Functional structure identification

In this research, the functional structure clustering algo-
rithm (Lu et al., 2018) and the text classification algo-
rithm were employed to identify functional structure in
the ACL dataset.

Specifically, first, as section headers are not case-sen-
sitive, all section headers extracted from the citation con-
text data were converted to lower case. We removed their
punctuation and numbers. Second, the section headers
were ranked based on their frequency in descending
order. Finally, Top100 high frequency section headers
were selected and classified to generate a domain-specific
functional structure. Finally, structural functions in the
ACL dataset are classified into the following five catego-
ries: Introduction, Background, Method, Experiment and
result (hereafter, Result), and Discussion and conclusion
(hereafter, Conclusion). The section headers under each
structural function are shown in Table 1. It is worth men-
tioning that, because we simply extracted the
section header that occurred immediately before the cita-
tion location, the extracted section headers may be
subsection headers.

By clustering Top100 high frequency section headers
into structural functions, 727,709 pieces of citation con-
text data denoted as S1 can be classified into their struc-
tural functions. The remaining 712,491 pieces of citation
context data are recorded as S2. To classify structural
functions on S2, we built a balanced subset by randomly
sampling from S1 and trained an automatic structural
functions classifier by the BERT model (Devlin
et al., 2018). Specifically, we randomly sampled 25,000
pieces of citation context data from each structural func-
tion in S1. The subset was split into training set, valida-
tion set, and test set at a ratio of 8:1:1. A pretrained BERT
model was fine-tuned for classifying automatically struc-
tural functions on S2. A “Tensorflow” framework is uti-
lized to implement neural network training. After
training 10 epochs, the accuracy of the BERT model in
the training set and the test set is 0.9407 and 0.8298,
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respectively. The trained BERT model was applied to S2.
The classification results on S2 can be found in the
Descriptive analysis subsection.

4.2 | Regression data preparation

In citation analysis, highly cited papers have higher
research value and citations of lowly cited papers are
more random (Thelwall, 2019). Therefore, we focused on
analyzing the citation structure in highly cited papers. By
employing the dividing method proposed by Huang
et al. (2020), we identified 544 and 270 highly cited
papers in full counting method and fractional counting
method, respectively. The more detailed partitioning
results are shown in the Descriptive analysis subsection.

In our experiments, we repeated the linear regression
analysis for different r1%. Specifically, we set tr2% as t80%
and tr1% as t20% to t70% with intervals of 10%, where tr1%
and tr2% can be obtained by Equation (8). Notably, due to
the boundary effect of data collection, some highly cited
papers did not reach t80%. Finally, 348 and 173 highly
cited papers were selected as cases for this study in full
counting method and fractional counting method, respec-
tively. The detailed experimental settings are shown in
Table 2.

5 | EXPERIMENTS AND RESULTS

5.1 | Descriptive analysis

Before the regression analysis, we present the distribution
characteristics of the ACL dataset. The publications' dis-
tribution in the ACL dataset is shown in Figure 5, where
the left sub-figure shows the number of papers published
annually and the right sub-figure gives a cumulative
view. In Figure 6, citation distribution in two in-text cita-
tion counting methods is shown in a double-logarithmic
coordinate system. It is worth noting that, because the
count in the fractional counting method may be less than
1, we plus one before taking its log.

We also present the structural functions' distributions
in S1 (i.e., structural functions identified by clustering
Top100 high frequency section headers), S2 (i.e., struc-
tural functions identified by BERT model), and S1[S2, as
shown in Table 3. We found that, in S1, citation context
data from Introduction (i1) and Background (i2) occupy
the majority, and account for 47.66% and 32.93%,
respectively. This may be caused by the fact that
section headers in i1 and i2 are more standardized and
unified than section headers in Method (i3), Result (i4),
and Conclusion (i5) in a specific field (Hu et al., 2013). In
S1[S2, citations are highly concentrated in i1 and i2,
which is consistent with the previous results (Ding
et al., 2013; Hu et al., 2013).

By using the dividing method proposed by Huang
et al. (2020), we classified 290,937 papers into three cate-
gories, as shown in Table 4. In addition, citation struc-
tures in high, medium, and low cited publications are
visualized, respectively, as shown in Figure 7. The x-axis

TABLE 1 The functional structure schema generated from the

ACL dataset

Functional
structure Section headers

Introduction Introduction, motivation, introduction and
motivation, introduction and related
work

Background Related work, related works, related
research, prior work, previous work,
background, background and related
work

Method Model, models, method, methods,
methodology,

Approach, system description, features,
baselines

Experiment and
result

Experiment, experiments, experimental
setup, experiment setup, experimental
results, experimental settings,
experimental setting, experiments and
results, results, data, dataset, datasets,
corpus, figure, setup, settings, evaluation,
evaluation metrics, implementation
details, implementation, training,
preprocessing, analysis

Discussion and
conclusion

Conclusion, conclusions, conclusion and
future work, discussion, results and
discussion, conclusions and future work,
future work

TABLE 2 Experimental setup

Counting methods

Full counting Fractional counting

Experimental group Control group Experimental group Control group

r1% Xtr1%
,ytr2% Ztr1%

,ytr2% Xtr1%
,ytr2% Ztr1%

,ytr2%
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denotes the structural functions and the y-axis is the pro-
portion of in-text citation count in each structural func-
tion. We found that the proportion of in-text citations in
i3 and i4 of highly cited papers obviously exceeds that of
both the medium and lowly cited papers. In contrast, the
proportion of in-text citations in i1, i2, and i5 of medium
and lowly cited papers obviously exceeds that of highly
cited papers. Thus, highly cited papers tend to be more
frequently cited in Method and Result. This rough con-
clusion motivated us to make further analysis in the fol-
lowing studies.

5.2 | Regression analysis

In this study, regression experiments are implemented
through a ridge regression algorithm encapsulated in the
MASS library (Venables and Ripley, 2002) of the R pro-
gramming language, and a grid search algorithm is
employed to determine the ridge regression parameter, λ.

We found that the functional structure feature can
improve the prediction accuracy of citation count predic-
tion. However, the increase of accuracy decays over time
and is obviously significant at the early stage of citation

FIGURE 5 Distribution of publications

FIGURE 6 Citation distributions in the two in-text citation counting methods

TABLE 3 Distribution of structural functions in S1, S2 and S1[S2

I Introduction (i1) Background (i2) Method (i3) Result (i4) Conclusion (i5)

S1 346,829 239,643 24,086 83,119 34,032

S2 149,176 153,474 152,185 171,891 85,765

S1[S2 496,005 393,117 176,271 255,010 119,797
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lifetime. As shown in Figure 8, the x-axis represents r1%,
and the y-axis indicates goodness of fit, R2. The red bar
and the blue bar denote R2 of the experimental group
and the control group, respectively. We found that R2 of
the experimental group exceeds that of the control group
for different r1%, which indicates that the separate in-text
citation count from different structural functions,
xi i∈Ið Þ, contains richer citation details than the total in-
text citation count, z ðPI

i¼1xiÞ. However, the increase of
R2 decreases gradually with the increase of tr1%. This may

be caused by the fact that, with tr1% increases, more
abundant information about the citation history of the
papers is fed into the linear model and the difficulties of
citation count prediction decreased. Therefore, both
groups can easily achieve excellent performance. In addi-
tion, it could also be caused by the formation of specific
citation patterns of individual papers at the later stage of
citation lifetime. As mentioned by Thelwall (2019), some
highly cited articles acquired most of their citations from
one section type. As shown in Figure 9, we randomly

TABLE 4 The results of dividing citation distribution

Counting method Level Interval Number

Full counting Lowly cited 0≤ x<8 238,113

Medium cited 8≤ x<197 29,533

Highly cited 197≤ x <∞ 544

Fractional counting Lowly cited 0≤ x<8 255,292

Medium cited 8≤ x<122 12,628

Highly cited 122≤ x <∞ 270

FIGURE 7 Citation structure in high, medium, and low cited publications

FIGURE 8 R2 in the ridge regression model

HUANG ET AL. 11



chose citation histories of four papers to clarify this view.
The paper in the left sub-figure of Figure 9a is frequently
cited in i1 and i2, while the paper in the right sub-figure
of Figure 9a is mainly cited in i4. The citations of the two
papers in Figure 9b are both highly concentrated in i3
and i4. Hence, papers tend to be cited frequently in one
or more fixed structural functions at the later stage of
citation lifetime, which means that the structural func-
tion feature may no longer provide variance information
for each paper.

By analyzing the regression coefficients in the ridge
regression model (i.e., wi i∈Ið Þ), we found differences
among citations from different structural functions. As
shown in Figure 10, when r1%≤ 40%, the coefficient
weight of Introduction and Method (i.e., w1 and w3) is
greater than that of Background, Result, and Conclusion
(i.e., w2, w4, and w5). This means that citations from i1
and i3 of a publication are especially important for per-
ceiving the future impact of the publication. As men-
tioned by Hu et al. (2013), highly cited and important
papers would be so famous that they would tend to come
to mind first when an author requires something con-
vincing and persuasive, and tend to be highly

concentrated in the first section of a paper. Therefore, the
papers cited frequently in i1 at the early stage are more
likely to be high quality, which makes them acquire
higher ultimate impact during their lifetime. In addition,
i1 generally contains the most references (Bertin,
Atanassova, Gingras, & Larivière, 2016; Boyack
et al., 2018; Hu et al., 2013; Tang & Safer, 2008; Voos &
Dagaev, 1976). Hu et al. (2013) argued that articles focus-
ing on methodology are more likely to have an excessive
number of citations in the method section. We agree with
Hu et al. (2013) and hold the view that articles, which
have more citations in i3 at the early stage tend to focus
on presenting new methodologies. Methodology-oriented
papers may be more likely to be cited by other studies,
which utilize new methods to solve different research
issues. Therefore, methodology-oriented papers tend to
be more highly cited than other types of papers (Boyack
et al., 2018). In addition, w4 and w5 are both larger than
w2, which means that citations from i4 and i5 are also
vital. The papers cited frequently in i4 and i5 at the early
stage may present new results and conclusions, so they
may also make an important academic contribution.
Finally, the weight of Background (i.e., w2) is almost

FIGURE 9 Accumulative citation count for four sample papers. (a) The two cases in the full counting method. (b) The two cases in the

fractional counting method
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always the smallest. This is possibly caused by the fact
that papers, which are cited in i2 may be cited only for
introducing the research background. Hence, citations in
i2 at the early stage may be more random and perfunc-
tory. Moreover, when r1%≤ 40%, we also calculated the
Spearman correlation coefficients, ρ xi,yð Þ, between inde-
pendent variables and dependent variable. In the full
(fractional) counting method, we found that ρ x1,yð Þ and
ρ x3,yð Þ are the largest with an average of 0.48 (0.53) and
0.49 (0.55), respectively, and ρ x2,yð Þ is the smallest with
an average of 0.32 (0.31), which coincides with the rela-
tive weight of regressors.

When r1%≥ 50%, the difference among regressors is
no longer obvious. On the one hand, this is possibly cau-
sed by the fact that tr1% is gradually approaching t80%; on
the other hand, as mentioned above, this may be due to
the formation of specific citation patterns of individual
papers. However, in the full (fractional) counting
method, we still found that ρ x1,yð Þ and ρ x3,yð Þ are the
largest with an average of 0.63 (0.59) and 0.61 (0.66),
respectively, and ρ x2,yð Þ is the smallest with an average
of 0.44 (0.44).

More detailed coefficients in ridge regression are
listed in Tables 5 and 6. Notably, w2 and w5 are negative
and insignificant in some regression equations. This may
be caused by the functional similarity among structural

functions identified in this study, which leads to the
colinearity in our regression equations. For instances, it
is difficult to clearly classify a small part of the
section headers in Table 2, such as “introduction and
related work.” In addition, there is a natural overlap
among the functions of sections (Thelwall, 2019).

5.3 | Robustness analysis

To test the robustness of the above results, we respec-
tively changed the strategy of identifying highly cited
papers, the values for tr1% and tr2%, and the regression
methods, and repeated the above experiments.

Specifically, we simply regarded papers with more
than 100 citations as highly cited papers, and selected
893 and 232 highly cited papers in the full counting
method and the fractional counting methods, respec-
tively. We kept the rest of the settings unchanged, and
repeated the above experiments. As shown in Tables 7
and 8, relative differences among these coefficients are
similar to those in Tables 5 and 6.

Subsequently, we still employed the dividing
method proposed by Huang et al. (2020), but set tr2% as
t75% and tr1% as t15% to t65% with intervals of 10%. We,
respectively, selected 380 and 184 highly cited papers in

FIGURE 10 Coefficients in the ridge regression model

TABLE 5 Coefficients and λ in the

full counting method
r1% Introduction Background Method Result Conclusion λ

20% 6.5041** �5.0094 18.1197*** 1.4234 5.2685 10.00

30% 7.4316*** �4.0650 13.6210*** 1.7809 3.5448 6.00

40% 6.9037*** 0.7882 8.0942*** 4.5895*** 1.1694 9.20

50% 4.1886*** 1.2009 2.0201*** 2.3233*** �0.8826 6.00

60% 2.7012*** 2.6472*** 2.1224*** 2.5545*** �0.3916 2.80

70% 1.4883*** 1.5175*** 0.3983* 1.2560*** 4.4144*** 4.80

*p < .05. **p < .01. ***p < .001.
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the full counting and the fractional counting methods,
and repeated the above experiments. Finally, we also
obtained similar results, as shown in Tables 9 and 10.

Moreover, we also repeated the experiments by
Lasso. Specifically, we employed the Lasso algorithm
encapsulated in the glmnet library (Friedman
et al., 2010; Simon et al., 2011) of the R programming
language. Finally, we still got similar results, as shown

in Tables 11 and 12. It should be noted that the signifi-
cant test of coefficients generally is not directly carried
out in the Lasso.

In the above robustness tests, the relative differences
among the coefficients from different structural functions
are almost the same. In addition, we also found that R2 of
the experimental group exceeds that of the control group.
Hence, our results are stable.

TABLE 6 Coefficients and λ in the

fractional counting method
r1% Introduction Background Method Result Conclusion λ

20% 12.4758*** �12.3981* 9.374*** 4.1406* 9.6918 6.40

30% 12.2496*** �8.8541** 6.2934*** 7.4150*** 7.0698 2.80

40% 10.5759*** �8.7628* 7.1224*** 3.2219*** �3.2836 3.20

50% 3.1098*** 2.3179 1.6826*** 3.6663*** �1.0451 4.80

60% 2.9238*** 0.6431 2.0419*** 2.5673*** �0.4969 1.60

70% 0.8095* 2.4613** 0.6200*** 1.7305*** 2.8885** 7.20

*p < .05. **p < .01. ***p < .001.

TABLE 7 Coefficients and λ in the

full counting method
r1% Introduction Background Method Result Conclusion λ

20% 5.7214*** �0.9331 15.4215*** 2.5559* 6.3210* 16.00

30% 5.9283*** �0.0435 11.2680*** 2.7818*** 5.0326* 12.40

40% 5.9629*** 1.3160 7.7874*** 3.8757*** 2.4694 10.40

50% 3.7881*** 1.6592*** 2.0208*** 2.4432*** 0.4910 6.80

60% 2.6742*** 2.0790*** 2.2928*** 2.3044*** 0.4471 2.80

70% 1.4930*** 1.5526*** 0.4328*** 1.3057*** 3.8484*** 3.60

*p < .05. **p < .01. ***p < .001.

TABLE 8 Coefficients and λ in the

fractional counting method
r1% Introduction Background Method Result Conclusion λ

20% 11.4112*** �9.6295 9.8165*** 4.2882* 7.2434 6.40

30% 11.4984*** �7.2793** 6.4236*** 7.4113*** 5.2286 3.20

40% 9.8634*** �7.8675** 7.0134*** 3.2514*** �2.6674 3.20

50% 2.8516*** 2.3904* 1.7613*** 3.6045*** �0.1907 5.20

60% 2.8217*** 0.7301 2.0569*** 2.5197*** �0.2772 1.60

70% 0.8618** 2.3380*** 0.6264*** 1.7391*** 2.9259*** 7.20

*p < .05. **p < .01. ***p < .001.

TABLE 9 Coefficients and λ in the

full counting method
r1% Introduction Background Method Result Conclusion λ

15% 4.7504 �3.0892 12.4078** 2.3864 5.8634 10.00

25% 8.1534*** �2.9133 16.0295*** 2.9776 �1.3691 11.20

35% 7.8016*** �3.0739* 9.1699*** 4.5164*** 3.4430 4.80

45% 7.6123*** �2.5142* 6.6153*** 2.7134** �7.8753 3.20

55% 3.1930*** 1.3405** 1.7710*** 3.2196*** �2.6446* 2.80

65% 2.3124*** 0.4791 2.3954*** 1.5183*** �0.4344 2.00

*p < .05. **p < .01. ***p < .001.
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6 | DISCUSSION

The functional structure forms the navigation of different
kinds of knowledge (Lu et al., 2018). Citations from dif-
ferent structural functions, to some extent, reflect the
types of cited papers (Hu et al., 2013; Tahamtan &
Bornmann, 2018).

In this paper, we found that, in the field of computa-
tional linguistics, citations from Introduction and Method
at the early stage of citation lifetime are particularly
important for measuring the future impact of papers.
Indeed, papers cited in Introduction tend to serve as illus-
trating the motivation and research problems (Ding
et al., 2013; Lu et al., 2018), and are more likely to be pio-
neers of research issues or state of the art for the research
question, and have thus inspired the author(s) to carry
out the research work (Fang, 2018). The papers fre-
quently cited in Method tend to be methodology-oriented
papers (Hu et al., 2013), and are especially important in
computational linguistics, as they provide methodological
trajectories (Lu et al., 2018). Moreover, citations from

Result and Discussion are also vital. Actually, citations in
the Result and Discussion are frequently about compara-
ble results (Hu et al., 2015), and citing authors are more
likely to agree with the conclusion from a paper cited in
Result and Discussion (Bertin, Atanassova, Sugimoto, &
Lariviere, 2016). Hence, the papers frequently cited in
Result and Conclusion at the early stage of citation life-
time tend to present valuable findings and make valuable
academic contributions. In contrast, citations from Back-
ground at the early stage of citation lifetime seem to be
less important. This may be due to the fact that papers
acquiring citations in Background might only play the
role of depicting the research background of the citing
papers, and their role may be replaced by other articles
on similar topics.

This research also provides several interesting indica-
tions for citation count prediction and scientific evalua-
tion. First, this study provides a new exploratory
direction for predicting citation count, that is, more fea-
tures extracted from citation contexts could be investi-
gated further in citation count prediction. For example,

TABLE 10 Coefficients and λ in

the fractional counting method
r1% Introduction Background Method Result Conclusion λ

15% 8.0082* �7.5768 14.1099*** 1.1522 8.825 9.20

25% 14.5494*** �17.2708*** 8.0900*** 4.2981** 4.5042 2.00

35% 8.8868*** �2.3885 7.2789*** 4.6004*** 1.1831 4.80

45% 8.2673*** �6.4386* 5.1185*** 2.3603*** �2.1959 3.20

55% 3.2798*** 0.8600 2.1393*** 2.5645*** �0.9008 2.00

65% 2.6530*** 0.3064 2.2493*** 1.3171*** 0.0654 1.20

*p < .05. **p < .01. ***p < .001.

TABLE 11 Coefficients and λ in

the full counting method
r1% Introduction Background Method Result Conclusion λ

20% 6.4917 �5.0108 18.1323 1.417 5.2964 0.00

30% 7.2433 �4.0618 13.6260 1.7791 3.5576 0.00

40% 6.9343 0.6400 8.0809 4.5222 1.2279 3.60

50% 4.4240 0.0000 2.0550 1.8043 0.0000 66.80

60% 2.8107 2.2316 2.1068 2.4207 0.0000 5.20

70% 1.5141 1.3194 0.4244 1.1272 3.7890 75.20

TABLE 12 Coefficients and λ in

the fractional counting method
r1% Introduction Background Method Result Conclusion λ

20% 12.5063 �12.5346 9.3819 4.1236 9.7844 0.00

30% 10.7209 �4.9694 5.9813 7.3762 6.4873 4.00

40% 10.0456 �8.1204 7..0010 3.1673 �2.4057 1.20

50% 3.4875 0.0000 1.5882 3.0965 0.0000 22.40

60% 2.9298 0.3120 2.0328 2.5012 0.0000 2.00

70% 0.8490 1.6967 0.6003 1.4281 1.8214 40.40
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citations from different structural functions may work as
distinct input features or output features, which may
improve the performance and interpretability of citation
count prediction. Actually, based on the above idea, we
have proposed a fine-grained citation count prediction
task in our future article. Second, our empirical results
show that there are differences among citations from dif-
ferent structural functions. Hence, an effective scientific
evaluation system should consider the relative importance
among citations. For instance, Zhao and Strotmann (2020)
presented a location filtered citation counting method to
make essential citations stand out. However, unlike simply
filtering citations, we argue that the relative weight of
regressors in our linear model is well worth considering in
weighted citation count.

There are some limitations to this study. First, it
focused only on analyzing citation structure in highly
cited papers, which can be effectively identified in cita-
tion life cycle by our proposed method. Citation structure
in medium and lowly cited papers needs to be further
explored. Second, there is a functional similarity among
structural functions, which leads to the collinearity in
our ridge regression analysis. Thus, a sophisticated func-
tional structure identification method needs to be consid-
ered in the future. Finally, this paper only analyzed the
citation structure by investigating publications in compu-
tational linguistics. Whether the differences of citations
from different functional structures exist in other fields
requires further studies.

7 | CONCLUSIONS

In this study, we employed the ridge regression model to
quantitatively reveal the relationship between citation
structure and future impact of a publication. Our experi-
mental results show that the functional structure feature
can obviously improve the prediction accuracy of citation
count prediction, which suggests citation from different
structural functions contains richer citation details than
the total citation count. Therefore, in citation count pre-
diction, citation may not be treated equally and, other
features extracted from citation contexts may be worth
further exploration. After analyzing weights of regressors,
we also revealed the relative importance among in-text
citations from different structural functions. More specifi-
cally, in the field of computational linguistics, the early
accumulation of citations in Introduction and Method is
especially important for measuring the future impact of a
paper. The early accumulation of citations in Result and
Conclusion is also vital. However, the citations in Back-
ground at the early stage of the citation life cycle seem
less important. Thus, in citation analysis, researchers

may need to consider the inherent difference among cita-
tions, and attach great importance to essential citations.
In addition, it must be strongly emphasized that the
observed results are statistical, not definitive, and individ-
ual papers may have a diversity of performance. In future
research, citation sentences deserve further analysis from
a semantic level by natural language processing technolo-
gies by offering a better understanding of the inherent
differences among citations from different structural
functions. In conclusion, our findings may help
researchers to quantitatively perceive differences among
citations from different structural functions and figure
out the potential reasons for the differences, which con-
tribute to building up an efficient research evaluation
system.
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