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Number versus Structure: Towards Citing Cascades 

Abstract: This paper proposes a novel concept of the citing cascade, defined as a 

network comprising citing relationships between a paper and its citing paper, as well as 

those among its citing papers. Compared with citation counts using a single number, 

citing cascades reveal the structural information of citation networks of a scientific 

publication and thus help us better understand the citation impact of a scientific 

publication (called the owner of the citing cascade). We then define and elaborate on 

several basic and advanced properties of citing cascades. By employing computer 

science publication records in the Microsoft Academic Graph dataset, we found that 

cascade size, edge count, in-degree, and out-degree all follow typical power law 

distributions with various exponential parameters (α). In addition, cascade depth is 

observed to follow an exponential distribution. We also examine the relation between 

citation count of the owner and some advanced properties that we defined. Many related 

future studies are also illustrated at the end of this paper. 

Keywords: citing cascade; citation count; citation impact; scientometrics. 

INTRODUCTION 

Citation counts have been adopted as a dominant indicator in research evaluation for 

decades (Waltman, 2016). Yet, scientometricians have never stopped improving on this 

indicator, such as normalizing the raw citation count from various perspectives (e.g., 

Radicchi, Fortunato, & Castellano, 2008; Waltman & Van Eck, 2015), implementing 

PageRank-related strategies considering the citing publications’ citation impact (e.g., 

Ding, Yan, Frazho, & Caverlee, 2009; Waltman & Yan, 2014), employing full-text data 

to distinguish citations with different occurrence time or location in the full text (e.g., 

Ding, Liu, Guo, & Cronin, 2013; Zhao, Cappello, & Johnston, 2017), and taking into 

the consideration citation networks (e.g., Kuhn, Perc, & Helbing, 2014; Perc, 2010, 
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2013). 

Nevertheless, these approaches have dealt with the citation impact of a scientific 

publication as a single number although some of them considered network-oriented 

issues. Yet, seldom of them considered the citing relationships between its citing 

publications except our previous work (Huang, Bu, Ding, & Lu, 2018). Following this 

work, this present paper explores the structural information among these relationships, 

since they are of importance in understanding and quantifying the citation impact of a 

publication. To this end, we propose a novel network structure, namely citing cascades1. 

Different from citation count that uses a simple number, a publication’s citing cascade 

is a citation network containing the citing relationships between the publication and its 

citing publications, and citing relationships within its citing publications. Figure 1 is an 

example of a citing cascade, in which citing relationships between publication 𝐴 and 

its citing publications, as well as citing relationships among 𝐴’s citing publications, are 

included. Note that citing relationships pointing to 𝐴 are shown in solid lines, while 

those not dotted lines. 

                                                

1 In Huang et al. (2018), such networks are named as “ego-centered citation networks.” 
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Figure 1. Illustration of a citing cascade. Each node represents a publication, where publication A 

is the owner of this citing cascade (Huang et al., 2018). Each edge indicates a citing relationship 

from the source node (citing publication) to the target node (cited publication). Citing 

relationships pointing to A are shown in solid lines, while those not dotted lines. 

A cascade is defined as a process “whereby something, typically information or 

knowledge, is successively passed on2.” When information is conveyed and passed on, 

the cascade is called an information cascade. The main reason why the network 

structure in Figure 1 is named as a citing cascade is that a citing cascade is a specific 

type of information cascade in which citing relationships are successively transmitted. 

Defining citing cascades help us understand the citing relationships (structural details) 

between a publication’s citing publications and paint a more nuanced pictures on the 

citation impact of the raw publication. 

The outline of this article is as follows. Related work concerning information cascades 

is provided in Section 2. The definition and several properties of citing cascades are 

proposed in Section 3. The dataset used in this paper and the results of the empirical 

                                                

2 https://en.oxforddictionaries.com/definition/cascade 
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studies are illustrated in Section 4. Finally, the conclusion and future work are presented 

in Sections 5 and 6. 

INFORMATION CASCADES 

The definition of information cascade is unclear and disparate in various disciplines. 

The earliest definition of information cascades derives from the field of sociology. For 

instance, Bikhchandani, Hirshleifer, and Welch (1992) defined information cascade as 

a way to interpret herding behavior (Trueman, 1994) (definition I) in which each 

decision-maker looks at decisions by considering previous decision-makers in spite of 

their own information. Using several detailed circumstances (e.g., fashion industry) to 

show how information cascades are able to interpret them, they pointed out the fragility 

and idiosyncratically of conformist behavior because of information cascades that “start 

readily on the basis of even a small amount of information” (p. 1016). In their paper, 

they also argued that (p. 1016): 

“Conformity often appears spontaneously without any obvious punishment of the 

deviators. Informational cascades can explain how such social conventions and norms 

arise, are maintained, and change.” 

However, later researchers outside of sociology expanded on this early definition and 

demarcated information cascades under their own context. In the present paper, 

cascades with information successively passed on is termed information cascades 

(definition II), which has been adopted by numerous researchers (e.g., Anderson & Holt, 

1997; Watts, 2002). An information cascade under definition II could be articulated by 

the following three aspects: 

(1) What is diffused: In general, “information” is diffused in an information cascade. 

However, in some studies, people care more about a specific item that is conveyed. 

Alvarez, Garcia, Moreno, and Schweitzer (2015), for instance, investigated 
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microblogging users’ sentiments diffusing in an information cascade. Anderson, 

Huttenlocher, Kleinberg, Leskovec, and Tiwari (2015) examined how “invitations” are 

diffused among LinkedIn users’ network. The entity that is diffused in a cascade is 

defined as its subject. 

(2) How the subject is diffused: People make decisions under the effects of their 

surroundings, and can “cascade” their decisions to others. Such kind of behavior is 

termed cascading behavior (or in some literature, cascade behavior). Apparently, 

cascading behavior is different from that purely decided by individual reasoning 

(Leskovec & Singh, 2005). Two effects are highlighted in cascading behavior: (a) 

people’s behavior is influenced by their environment; and (b) people’s behavior also 

influences their surroundings. 

(3) What the results/outputs are: The structure or paths of the diffusion of the subject 

can constitute a tree, graph, or network. The detailed name of a cascade is based on 

what is conveyed/diffused. We know that, generally, “information” is diffused, and this 

is thus mostly termed information cascades. In the cases of Alvarez et al. (2015) and 

Anderson et al. (2015) mentioned in (1), the cascades are named as sentiment and 

invitation cascades, respectively. Cascades defined in this paper are termed citing 

cascades because citing relationships are conveyed as defined in Figure 1. 

In summary, an information cascade is a concept that differs in other fields compared 

with that in sociology. Researches from various areas have focused on different aspects 

of the above three factors. 

The fields of management exhibit great interest in how different factors or strategies 

affect information diffusion in information cascades and how they influence sales 

volume by implementing regression analyses and/or game theories (Kleinberg, 2007). 

Duan, Gu, and Whinston (2005) measured herding behavior by using the previous 

number of downloads of a certain software recorded by the CNETD dataset and found 

that herding behavior in this process is indeed strong. However, they concluded that 
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herding is not significantly influenced by the provision of professional product reviews 

or user reviews. Walden and Browne (2002) identified the important role that 

information cascades play in the scenarios of users’ adopting technologies. Specifically, 

they argued that the process of users to adopt new technologies heavily depends on their 

prior information. To test this, they regarded information cascade as a process of 

passing by “signals” from others to a given individual and built an (quantitative) 

operational model in which the “correct cascade” (herding and making a correct 

decision) and “incorrect cascade” are both pre-defined. Leskovec and Singh (2005) 

examined a recommendation network generated from the online seller Amazon, and 

concluded that a customer receiving more than one recommendation of a certain 

commodity is more willing to purchase the commodity, which constitutes a typical 

reflection of an information cascade. Some management scientists also paid attention 

to social governance through targeting a specific event, such as González-Bailón, 

Borge-Holthoefer, and Moreno (2013) who built a network based on the data of Twitter 

users’ message activity prior to the 2011 Election Day (May 22). They found that social 

network dynamics facilitate coordination—in this case, social movements—by 

triggering information cascades that can potentially reach a large number of people in 

a short period of time. 

Physicists are interested in cascading behavior, mainly exploring the mechanism of this 

process by presenting quantitative models from a more theoretical perspective. In this 

area, mainly two branches of study exist. The first presents a certain model and 

simulates different types of networks by using their proposed model (e.g., Anderson & 

Holt, 1997; Galstyan & Cohen, 2007; Hisakado & Mori, 2015; Watts, 2002). For 

instance, threshold models are a set of models that are the most commonly used in this 

branch of studies. These models assume that nodes (such as persons in an information 

cascade) display “inertia” in switching states, but once their personal threshold is 

reached, “the action of even a single neighbor can tip them from one state to another” 



Number versus Structure 

8 

 

(Watts, 2002, p. 5767). Hisakado and Mori (2016) is a good example of using the 

threshold model to understand information cascades in which public perceptions are 

conveyed. Specifically, they considered information cascades as a vote process and 

defined two types of voters, namely independents and herders, in a mathematical way; 

independents tend to vote according to their fundamental issues, while herders based 

on the previous number of votes. The empirical studies conducted on random graphs, 

scale-free graphs generated by the Barabási-Albert (BA) model (Barabási & Albert, 

1999), and graphs from fitness models (Bianconi & Barabási, 2001) showed that there 

are only limited effects of hubs in cascade networks on voters’ perceptions. Some other 

studies exercised independent cascade models (e.g., Wang, Chen, & Wang, 2012a) and 

Markov chain models (e.g., Li, Ma, Guo, & Mei, 2017; Wang, Scaglione, & Thomas, 

2012b). The second branch investigates cascade failure, which is defined as the 

subsequent failure of a part of a certain network that is induced by other part(s) of the 

network (e.g., Wang et al., 2012b). Lai, Motter, and Nishikawa (2004) demonstrated 

that scale-free networks generated by the BA model tend to be more sensitive to short-

range, rather than long-range, attacks. Similarly, Buldyrev, Parshani, Paul, Stanley, and 

Havlin (2010) understood interdependent networks, which means that one network’s 

normal functioning is dependent on another. To do this, they built a single network and 

several interdependent networks and found that a broader degree distribution of the 

nodes in interdependent networks correlates to a higher vulnerability on random failure, 

compared with the single network. 

Nevertheless, computer scientists are interested in the final structure and characteristics 

of information cascades after they have been formed from a network perspective. From  

macro- and meso-level perspectives, Baños, Borge-Holthoefer, and Moreno (2013) 

constructed an information cascade using Twitter data and explored several of its 

properties, including degree (distribution), coreness, average path length, and depth; 

communities were also detected and analyzed in the cascade. In another study providing 
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a temporally sentiment analysis, indicators were measured, including cascade size and 

centrality (Alvarez et al., 2015). Yet, micro-level analyses were missing. Some network 

phenomena were detected in information cascades. Liben-Nowell and Kleinberg (2008), 

for instance, built an Internet chain letter network and observed a small-world property; 

they identified a “narrow but very deep tree-like pattern” in the network (p. 4633). Yet, 

Golub and Jackson (2010) argued that such pattern might subject to change if one uses 

a different dataset. Additionally, Anderson et al. (2015) studied the homophily in a 

diffusion process within the LinkedIn invitation cascade; particularly, geography- and 

industry-related factors are found to have significant homophily effects in the formation 

of the cascades. Similar research in this stream established empirical studies in viral 

marketing (Leskovec, Adamic, & Huberman, 2007a), product recommendations 

(Leskovec, Singh, & Kleinberg, 2006), rumor dissemination (Kostka, Oswald, & 

Wattenofer, 2008), and social media (Bakshy, Hofman, Mason, & Watts, 2011; Cha, 

Benevenuto, Ahn, & Gummadi, 2012; Cheng et al., 2014; Cui et al., 2013; Leskovec, 

McGlohon, Faloutsos, Glance, & Hurst, 2007b; Sun, Rosenn, Marlow, and Lento, 2009; 

Yu & Fei, 2009). 

Overall, we can find that the major concerns of research in management science, 

physics, and computer science correspond to the aforementioned three aspects: (a) what 

is diffused; (b) how the subject of a cascade is diffused; and (c) what are the 

results/outputs. Although having identified and quantified interesting phenomena in 

information cascades, many of these studies simply concentrated on global scenario but 

ignored local network patterns of a certain (part of) information cascade. Needless to 

say, there is also few papers disentangling the joint effects of global versus local 

patterns, as pointed out by Borge-Holthoefer et al. (2013), in a systematical way. Even 

in the research context of science of science, most network-based studies on citation 

impacts prefer to use PageRank-related methods to investigate global- but not local-

level patterns. To this end, we propose citing cascades that can assist us to better 
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understand the structural information of a publication’s citation network and, therefore, 

to learn more in-depth about its citation impact. 

METHODOLOGY 

Definition of citing cascades 

A citing cascade is essentially a network. From the perspective of network vertices, the 

citing cascade of a publication 𝑝଴ includes all of the citing publications of 𝑝଴ as well 

as 𝑝଴ itself. From the perspective of network edges, it contains all citing relationships 

from the citing publications of 𝑝଴ to 𝑝଴ (named as direct citing relationships), plus 

citing relationships among 𝑝଴ ’s citing papers, which are termed indirect citing 

relationships. A citing cascade can be represented as a directed graph 𝐺 (𝑉, 𝐸)  in 

which each vertex 𝑣 ∈ 𝑉  shows a scientific publication, and every directed edge 

𝑒(𝑢, 𝑣) ∈ 𝐸  represents that publication 𝑢  has ever cited publication 𝑣 . In a citing 

cascade, the only vertex whose out-degree equals to zero is named as the owner of the 

citing cascade. Those vertices other than the owner, representing the citing publications 

of the owner, are named as endorsers, as these publications have endorsed (cited) the 

owner (Ding, 2011). In the citing cascade example in Figure 1, 𝐴 is the owner, while 

𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 are all endorsers. 

There are three types of endorsers in citing cascades according to the structural 

information of a citing cascade: 

(1) Endorsers having been cited by at least one of the other endorsers, such as 𝐵, 𝐷, 

and 𝐸 , are named as connectors, because in citing cascades they connect other 

endorsers and the owner. The number of connectors in a citing cascade is annotated as 

|𝑉௖|. 

(2) Endorsers that have cited other endorsers, such as 𝐶, 𝐸, and 𝐹, are termed late 

endorsers, since they were published after the corresponding connectors had been 
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published. This term is borrowed from the field of innovation diffusion (Brancheau & 

Wetherbe, 1990). The number of late endorsers in a citing cascade is annotated as |𝑉௟௘|. 

Note that a late endorser might also be a connector at the same time, such as 𝐸 in 

Figure 1. 

(3) Endorsers that have no indirect citing relationships, regardless of citing others or 

being cited, with other endorsers, such as 𝐺  in Figure 1, are named as isolate 

endorsers. The number of connectors in a citing cascade is annotated as |𝑉௜|. Therefore, 

|𝑉| − 1 ≤ |𝑉௖| + |𝑉௟௘| + |𝑉௜|. 

One of the differences among these three types of endorsers lies in their in- and out-

degrees (detailed in the section of “Basic properties of citing cascades”). 

In summary, we classify all vertices in citing cascades into two types, owner and 

endorser, as seen in Figure 2. The latter consists of connectors, late endorsers, and 

isolate endorsers (isolate endorsers are indicated by the grey area); connectors and late 

endorsers are not always mutually exclusive. Regarding edges, a citing cascade contains 

direct and indirect citing relationships, shown as solid and dotted lines, respectively, in 

Figure 1. 
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Figure 2. Types of endorsers in a citing cascade. 

Information cascades researched in other social networks (e.g., Bakshy et al., 2011) 

include vertices (followers, essentially endorsers in citing cascades) not linked to the 

initial vertex (owner in citing cascades). However, our defined citing cascades do not 

include these vertices, i.e., endorsers’ endorsers that have never cited the owners are 

excluded. 

Basic properties of citing cascades 

A citing cascade is de facto a network. We here make an analogy and define five basic 

properties of citing cascades based on common network properties. 

The cascade size illustrated in a citing cascade is defined as the number of endorsers in 

a citing cascade, which equals to the citation count of the owner, |𝑉| − 1, where |𝑉| 

refers to the total number of vertices in a citing cascade. For instance, the size of the 

citing cascade in Figure 1 is six. 

The edge count is the total number of edges in a citing cascade, represented as |𝐸|, 
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including both direct and indirect citing relationships of the owner. The number of 

direct citing relationships is represented as |𝐸஽| , while that of indirect citing 

relationships is |𝐸ூ|; obviously, |𝐸| = |𝐸஽| + |𝐸ூ|. The edge count in Figure 1 equals 

to 10, six of which are direct citing relationships and the remaining four are indirect 

citing relationships. 

The cascade depth measures the length of the longest directed path from any endorser 

to the owner in a citing cascade. The longest directed path in Figure 1 is [𝐹 → 𝐸, 𝐸 →

𝐷, 𝐷 → 𝐴]; therefore, the depth of this citing cascade is three. 

Since a citing cascade is a directed graph, the degree of a vertex is measured as in-

degree (the number of edges linked to it) and out-degree (the number of edges from it). 

The in-degree of vertex 𝑣 is represented as 𝑑𝑒𝑔ି(𝑣) and its out-degree 𝑑𝑒𝑔ା(𝑣). If 

𝑑𝑒𝑔ା(𝑣଴) = 0 , the vertex 𝑣଴  is the owner of the citing cascade. If 𝑑𝑒𝑔ା(𝑣଴) > 0 

and 𝑑𝑒𝑔ି(𝑣଴) > 0, the vertex 𝑣଴ should be a connector. If a vertex 𝑣଴ is an endorser 

but not a connector (i.e., a late or isolate endorser), 𝑑𝑒𝑔ି(𝑣଴) = 0 . In the citing 

cascade shown in Figure 1, for the owner 𝐴, its in-degree equals to 𝑑𝑒𝑔ି(𝐴) = |𝑉| −

1, which is equal to citation count, while its out-degree is zero. For 𝐶, 𝐹, and 𝐺, their 

in-degrees are all zero. The in-degree of the connector 𝐵, 𝑑𝑒𝑔ି(𝐵), is one and the 

out-degree, 𝑑𝑒𝑔ା(𝐵), is one; the in-degree of the later adopter 𝐶, 𝑑𝑒𝑔ି(𝐶), is zero 

and the out-degree is 𝑑𝑒𝑔ା(𝐶) is three. The relationships between different endorsers, 

as well as their in- and out-degrees, are presented in Figure 2, in which one can see that 

all endorsers have out-degrees larger than zero, because they all at least cite the owner. 

The out-degree of isolate endorsers must be one, as they purely cite the owner. For late 

endorsers, they cite not only the owner but also certain connector(s), leading their out-

degrees to be larger than one. Regarding connectors, their out-degrees could be one, if 

the connectors are not late endorsers, or larger than one if they are. 



Number versus Structure 

14 

 

Advanced properties of citing cascades 

In addition to basic properties analogous to general network attributes, we also define 

several properties that are characteristic of citing cascades. Firstly, we define the 

percentage of connectors out of all endorsers, 𝑃(𝑐), as: 

                             𝑃(𝑐) =
|௏೎|

|௏|ିଵ
                             (1) 

In the citing cascade shown in Figure 1, 𝑃(𝑐) =
ଷ

଺
= 0.5 . Mathematically, 𝑃(𝑐) 

ranges from 
ଵ

|ா|
 to (1 −

ଵ

|ா|
) if not equivalent to zero. 

Similarly, we can define the percentage of late endorsers among all endorsers, 𝑃(𝑙𝑒), 

as: 

                            𝑃(𝑙𝑒) =
|௏೗೐|

|௏|ିଵ
                             (2) 

We know that all late endorsers’ out-degrees are larger than one, thus 𝑃(𝑙𝑒) =

𝑃(𝑑𝑒𝑔ା(𝑣) > 1). In the citing cascade presented in Figure 1, there are three endorsers 

whose out-degrees are greater than one, i.e., 𝐶, 𝐸, and 𝐹; therefore, 𝑃(𝑙𝑒) =
ଷ

଺
= 0.5. 

Similar to 𝑃(𝑐), the range of 𝑃(𝑙𝑒) is {0} ∪ [
ଵ

|ா|
, (1 −

ଵ

|ா|
)]. 

We also define the ratio between the numbers of late adopters and connectors to 

calculate the average number late endorsers linked with a connector in a citing cascade 

(𝐴𝑁𝐿𝐸𝐶). Mathematically, 𝐴𝑁𝐿𝐸𝐶 is defined as: 

                              𝐴𝑁𝐿𝐸𝐶 =
|௏೗೐|

|௏೎|
                          (3) 

In Figure 2, for instance, since we have three late endorsers (𝐶, 𝐸, and 𝐹) and three 

connectors ( 𝐵 , 𝐷 , and 𝐸 ), 𝐴𝑁𝐿𝐸𝐶 = 1 . A greater 𝐴𝑁𝐿𝐸𝐶  indicates a greater 

number of late endorsers of the given owner linked by the connectors. 

Although a connector might be cited many times, not all of its citing publications cite 

the owner. In other words, some of its citing publications are included, but others are 
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excluded, from the citing cascade. We therefore define the conversion rate of a 

connector 𝑖, 𝐶𝑅௜, as the percentage of citing publications in the citing cascade among 

all of 𝑖’s citing publications. In practice, 𝐶𝑅௜ is calculated as: 

                                𝐶𝑅௜ =
|௏೗೐|೔

௖௖೔
                           (4) 

where |𝑉௟௘|௜ is the number of late endorsers connected by the connector 𝑖; and 𝑐𝑐௜ is 

the citation count of 𝑖 recorded in our dataset. For instance, connector 𝐵, 𝐷 and E 

have been cited five, five, and two times in the whole corpus, and therefore, the 

converting rate for these connectors are 
ଵ

ହ
 , 

ଶ

ହ
 , and 

ଵ

ଶ
 , respectively. Note that in one 

given citing cascade, connectors might have various conversion rates; meanwhile, a 

connector might have different conversion rates in citing cascades of distinct owners. 

In a given citing cascade, the average conversion rate (𝐴𝐶𝑅) is: 

                               𝐴𝐶𝑅 =
∑ ஼ோ೔೔∈ೇ

|௏೎|
                         (5) 

Both 𝐴𝑁𝐿𝐸𝐶 and 𝐴𝐶𝑅 measure how many late endorsers of the owner are linked to 

the connectors. The difference is that the latter takes into account all of a connector’s 

citing publications (i.e., global citations), while the former simply considers its citing 

publications within a citing cascade (late endorsers that have cited this connector, i.e., 

local citations). The two properties complement each other and assist us to better 

understand the structures of citing cascades. 

RESULTS AND DISCUSSION 

Data 

All publications labelled as “Computer Science” in the Microsoft Academic Graph 

(MAG) dataset (Sinha et al., 2015) are utilized in this study, annotated as MAG-CS. 

This results in a total of 5,249,815 publications in the dataset, among which there are 

2,429,009 papers that have received at least one citation with no citation loops or circles. 

We then built a citing cascade for each of these papers, containing the citing 
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relationships between a publication and its citing publications, as well as those among 

its citing publications. Additional details on the descriptive statistics on the dataset that 

we used can be found in our previous work (Huang et al., 2018). 

Distributions of basic properties in citing cascades 

We plot the probability distribution (PD) of five basic properties in citing cascades 

within the MAG-CS dataset, as shown in Figure 3, in which the vertical axes represent 

the probability (i.e., percentage) that a variable equals to the corresponding horizontal 

axis value. 
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Figure 3. Probability distributions (PD) of basic properties in citing cascades: cascade size (a), 

edge count (b), cascade depth (c), and in- and out-degree (d). In panels (d), all in-degree values are 

normalized by adding one to prevent the calculation of 𝒍𝒈𝟎. 

From Figures 3(a) and 3(b), it can be seen that the dots follow a downward trend, 

meaning that the dots with small values dominate in quantity, and those with large 

values are fewer. Specifically, approximately 2.4% of all cascades have a cascade size 

of 10, but the possibility of selecting a citing cascade whose size is 100 is only ~0.02%; 

approximately 0.085% of the cascades feature an edge size of 20. We also find that the 

fitted curve is a right-skewed straight line on log-log scales, indicating that the cascade 

size and edge count both follow power law distributions, in general. Mathematically, a 

variable 𝑥  follows a power law distribution if its PD 𝑝(𝑥) = 𝑘𝑥ିఈ , where 𝑘  is a 
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constant and 𝛼 is known as the exponential parameter (Clauset, Shalizi, & Newman, 

2009). The red straight lines indicate the power law fitted lines, with 𝛼 equal to 2.27 

and 1.96, respectively. The estimated values of 𝛼 can reveal important properties of 

how the mean and variance of the distribution scale with system size (Alvarez et al., 

2015), which in our case is the amount of papers in the MAG-CS dataset. For example, 

𝛼 ≤ 2 implies that both the mean and the variance of 𝑥 increase with the size of the 

sample, but 𝛼 > 2 indicates that those would not scale with the system size (Newman, 

2005). From our empirical results, it can be seen that the property of cascade size is 

fitted with 𝛼 > 2, while edge size 𝛼 ≤ 2. These mean that the expected cascade size 

would not be greater with a larger amount of publications in the dataset. Nonetheless, 

this is not the case for edge size, in which the expected edge size would increase as the 

dataset size increases. 

Cascade depth, as a commonly used structural property, reveals the depth of influence 

while the cascade size indicates the width of influence. In Figure 3(c), one can see that 

approximately 0.1% of all citing cascades in MAG-CS have a depth of 10, meaning that 

the longest path in these cascades is 10. A cascade (assume that 𝐴 is its owner) whose 

depth is 10 means that there is at least one citing publication of the owner (annotated 

as 𝐽) that has cited another citing publication of the owner (𝐼); 𝐼 also cited 𝐻, …, 𝐶 

cited 𝐵, and 𝐵 cited the owner 𝐴; all 𝐵 − 𝐽 cited the owner 𝐴, as shown in Figure 

4. A cascade like this reveals an extremely large influence of the owner on its related 

field. Meanwhile, the scatters appear to be fitted by the solid line under an exponential 

distribution 𝑝ௗ௘௣௧௛~ 𝜆𝑒ିఒ௫  upon a semi-logarithmic scale, where 𝜆 = 0.58 . 

According to the mathematical properties of exponential distributions, the mean value 

of the cascade depth equals to 
ଵ

଴.ହ଼
≈ 1.72. This is reasonable because there are many 

publications that are only cited once; in these cases, the cascade depth is equivalent to 

one. Regarding in- and out-degrees, we adopt blue dots to represent in-degree and red 

out-degree in Figure 3(d), in which we find that the indicators of in- and out-degree 
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decay follow typical power law distributions. In order to prevent the calculation of 𝑙𝑔0, 

in practice, the values of in-degree in the horizontal axes are normalized by adding one 

to the actual in-degree value. From the figure, we observe similar distributions for in- 

and out-degrees. Dots on the in- and out-degree curves coincide with each other when 

degree values are smaller than 10 (following a power-law distribution with an exponent 

parameter 𝛼 = 2.52, shown as orange triangles). The out-degree curve decreases much 

faster, decaying as a power law distribution with 𝛼 = 5.33 , than in-degree that is 

characterized by a power law distribution with 𝛼 = 2.98. 

 

Figure 4. A simplified example of a citing cascade with depth=10. 

Correlation between citation count of the owner and advanced properties of citing 

cascades 

For each advanced property defined in the “Advanced properties of citing cascades” 

section, we plot a heat scatter plot in Figure 5. In each subfigure, the horizontal axis 

represents the citation count of the owner in a citing cascade, while the vertical axis the 

corresponding property (e.g., in Figure 5(c), the vertical axis refers to the percentage of 

late endorsers). The color indicates the number of citing cascades whose owners’ 

citation counts and a certain property equal to the corresponding values shown in two 
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axes; the color follows the bar to the right of the figure. For instance, the number of 

citing cascades that contain 50% connectors out of all endorsers is 3,150 (10ଷ scale), 

if we constrain the citation count of the cascade owner as 10 in the MAG-CS dataset. 

In addition to the scatters in Figure 5, several other curves are displayed. The pink lines 

that usually exhibit many fluctuations are composed of the mean values of a certain 

property at each citation count. For example, in Figure 5(b), the average value of 𝐴𝐶𝑅 

when the citation count equals to 40 is 4.12%. For better visualization, we also plot red 

solid curves that are the smoothed pink lines by employing an algorithm called Locally 

Weighted Scatterplot Smoothing (Cleveland, 1979). Meanwhile, in Figures 5(c) and 

5(d), the grey curves show the upper and lower bound of the corresponding properties, 

except those whose 𝑃(𝑐) or 𝑃(𝑙𝑒) equals to zero. 

 

Figure 5. The relation between the citation count of the owner and advanced properties of citing 
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cascades in MAG-CS: (a) average number of late endorsers linked with a connector (𝑨𝑵𝑳𝑬𝑪); (b) 

average conversion rate (𝑨𝑪𝑹); (c) the percentage of connectors (𝑷(𝒄)); and (d) the percentage of 

late endorsers (𝑷(𝒍𝒆)). 

The dots in the left of Figure 5(a) are orange while those in the right tend to be blue, 

indicating that there are more publications with a lower number of citations than those 

with greater citation counts. For example, there are 40 citing cascades in which the 

owners’ citation count is 20 and an average of five late endorsers connected to one 

connector, but the corresponding number for owners being cited 100 times and 𝐴𝑁𝐿𝐸𝐶 

five is only one. Meanwhile, we observe in Figures 5(a) and 5(b) some blue dots with 

medium horizontal values but relatively higher vertical values, which reveals that in 

citing cascades of medium-cited publications, it is likely to contain more late endorsers 

than connectors and feature greater conversion rates than others. In Figure 5(b), it can 

be seen that that the number of orange dots is very limited, and most of them are located 

in the left part of the figure (fewer than 20 citations). This phenomenon implies the 

rareness of high conversion-rate connectors in citing cascades with highly-cited owners. 

From the perspective of the red line indicating smoothed average values in both Figures 

5(a) and 5(b), we do not detect obvious changes when the citation count increases. We 

know that the property of 𝐴𝑁𝐿𝐸𝐶  illustrates the average number of late endorsers 

linked by a connector. Hence, the invariability of this property indicates that a single 

connector, regardless of which citing cascades of publications with different numbers 

of citations, has a relatively similar number of linked late endorsers of the owner. 

Different from 𝐴𝑁𝐿𝐸𝐶 that focuses on local scenarios, the conversion rate measures 

the degree to which a connector is linked by late endorsers of the owner, taking into 

account all of its citing publications (including those out of a certain citing cascade). 

The flat red line in Figure 5(b) demonstrates an unchanged conversion rate for 

connectors in citing cascades with differently-cited owners. Combined with our finding 

in Figure 5(a), it can be determined that, as owners’ citation counts increase, the number 
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of late endorsers linked by late endorsers of the owner does not change apparently, 

regardless of considering all connectors’ citing publications in the dataset (global 

citation) or simply the citing publications within the citing cascade (local citation in the 

cascade). 

The heat scatter plots in Figures 5(c) and 5(d) exhibit similar patterns, in which orange 

dots are dominant on the left and blue ones on the right. However, the maximum values 

of 𝑝(𝑐) first increase and then decrease, while those of 𝑝(𝑙𝑒) first increase and then 

remain unchanged. From the perspective of smoothed average value curves, although 

we observe some fluctuations when owners’ citation count is great, generally both 

figures first show an upward trend, as the citation counts of the owner increase. This 

finding indicates that lowly-cited publications contain a smaller percentage of 

connectors and late endorsers in their citing cascade than highly-cited publications. 

Therefore, citing cascades of lowly-cited publications include more ratios of isolate 

endorsers, such as publication 𝐺 in Figure 1. When the number of citations increases, 

we find that publications’ citing cascades tend to have more connectors and late 

endorsers. However, both of the figures exhibit a flat trend after increasing, which 

means that after a publication has become highly-cited, 𝑝(𝑐)  and 𝑝(𝑙𝑒)  do not 

change obviously as the owners receive more citations. Specifically, the percentages of 

connectors and late endorsers remain around 0.3 and 0.5, respectively, among the 

number of all endorsers. We even observe a slight decreasing trend, although 

nonobvious, in Figures 5(c) and 5(d), when the citation count of the owner is larger than 

500. One possible explanation for this is that a highly-cited publication has achieved a 

relatively sufficient amount of awareness among researchers due the Matthew Effect 

(Merton, 1968). For example, by default highly-cited related publications are 

prioritized when scholarly databases, such as Google Scholar, display the retrieval 

results, and the influence of the connectors on establishing more connections to the 

owner might be weakened, or at least not be as effective as previously when the 
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publication was lowly-cited. The findings from Figures 5(c) and 5(d) confirm our 

previous findings (Huang et al., 2018), in which the number of citing relationships 

between citing publications increases when lowly- and medium-cited publications 

receive more citations. Nevertheless, it does not increase significantly as citation counts 

of highly-cited publication accumulate. 

SUMMARY 

This paper proposes a novel concept of a citing cascade, which is defined as a network 

comprising citing relationships between a paper and its citing paper, as well as those 

among its citing papers. The motivation of defining citing cascades aims to understand 

the structural information among a publication’s citing publications instead of purely 

using the citation count (a number) as an indicator. We therefore define and elaborate 

on several basic and advanced properties of citing cascades to understand their patterns 

beyond citation counts. Several points from our earlier discussions are worth examining 

in greater detail. By employing the computer science publications records in the 

Microsoft Academic Graph dataset, we found that cascade size, edge count, in-degree, 

and out-degree all follow typical power law distributions with various exponential 

parameters ( 𝛼 ). In addition, cascade depth is observed to follow an exponential 

distribution. We also examined the relation between citation count of the owner and the 

advanced properties that we defined. Results show that neither the average number of 

late endorsers connected to a connector (𝐴𝑁𝐿𝐸𝐶) nor the average conversion rate (𝐴𝐶𝑅) 

increases as the number of citations of the owner increases, but the percentages of both 

connectors and late endorsers first increase and then remain constant. 

LIMITATIONS AND FUTURE WORK 

If we return to the citing cascade itself, one can find that the definition detailed in this 

paper did not include the citing relationships between the owner’s citing publications 
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and its citing publications’ citing publications. The reason why they were excluded is 

that the present research simply demonstrates the citation impact of the owner but not 

further research questions. A citing cascade consisting of the owner, its endorsers, and 

its endorsers’ endorsers should be termed as a second-order citing cascade and could 

be researched in follow-up studies. Each citing publication as an endorser might not 

only constitute the “spreader” or “adopter” of the owner’s idea, but also an “initiator” 

that would also bring new and innovative inspirations. The initial motivation of an 

endorser to cite the owner is not likely to assist the owner to disseminate citations more 

widely, but to help demonstrate the endorser’s own ideas. The topics between the owner, 

its endorsers, its endorsers’ endorsers (second-order endorsers), and its endorsers’ nth-

order endorsers could be topically distinct after several iterations. We here name the 

citing cascades that contain nth-order endorsers as nth-order citing cascades3; thus, the 

cascade proposed in this paper is typically a first-order cascade. It will be interesting to 

investigate the topic evolution of these publications, and some illuminating knowledge 

diffusion patterns through these paths might be identified. In addition to the idea from 

first- to nth-order cascades, another way to expand the definition of the citing cascade 

is to supplement certain constraints onto the cascade, such as content- and time-

constrained citing cascades: 

Content-constrained citing cascades: Based on the citing cascade defined in this paper 

(first-order cascade), we can filter the endorsers occurring in a cascade by using the 

topical relatedness between the owner and a given endorser. Specifically, future studies 

can choose a threshold and simply include the endorsers whose topical similarity with 

the owner is larger than the threshold and exclude those are not. By doing this, the 

research areas of the publications in a given cascade will be more focused and denser. 

                                                

3 Essentially the “citation cascade” mentioned in Min, Sun, and Ding (2017) and Min, Bu, Sun, and Ding (2018) 

should be categorized in this type. 
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Content-constrained citing cascades are particularly useful when we specialize in 

research about concept evolution and topic evolution. 

Time-constrained citing cascades: In addition to filtering the endorsers by considering 

their content-level information, future researchers can also include the published time 

information of the owner and the endorsers. A potentially achievable way to do this is 

to reserve endorsers published within certain years after the owner has been published 

and exclude the others (Alvarez et al., 2015). 

Meanwhile, under the framework built by the current definitions, all of the citing 

publications are equally treated regardless of their differences, such as the published 

year of the citing publications and the topical relatedness between the citing and cited 

publications. Scientometricians should consider combining these attributes of 

publications with citing cascades. By doing so, the graph (network) built by the citing 

cascade will be more informative, in that it involves not only the nodes and edges in a 

graph but also the attributes of the nodes. Some regression models might also be 

adopted to solve related issues. From a purely scientometric perspective, some 

comparisons between scholarly relationships (e.g., co-citation [Bu, Ni, & Huang, 2017; 

Small, 1973; White & Griffith, 1981] and bibliographic coupling [Kessler, 1963; Zhao 

& Strotmann, 2008]) and citing cascades should be discussed. 

Many other related issues could be studied productively in the near future. For example, 

an endorser might first act as a late endorser, but later also act as a connector. The 

dynamic change of the endorsers’ roles could be interesting to understand the citing 

behavior-related issues, thus temporal analyses can be implemented by utilizing a 

framework that is similar to that of the current study. Moreover, since we present a basic 

description of citation depth in this paper, future work can consider citation depth more 

deeply and assess more thorough meanings of citing cascades. Finally, future 

researchers should focus more on how to understand bias in citing behavior by 
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modeling the details of knowledge diffusion through citing cascades and interpret 

“cascading behaviors” by utilizing both qualitative and quantitative approaches. 
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