
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221232923

CISR at INEX 2006.

Conference Paper · December 2006

DOI: 10.1007/978-3-540-73888-6_6 · Source: DBLP

CITATION

1
READS

199

3 authors:

Some of the authors of this publication are also working on these related projects:

Dyslexia and IR. View project

Audio-based Music Similarity Modelling View project

Wei Lu

Wuhan University

52 PUBLICATIONS 204 CITATIONS

SEE PROFILE

Stephen E. Robertson

University College London

258 PUBLICATIONS 17,643 CITATIONS

SEE PROFILE

Andrew Macfarlane

City, University of London

93 PUBLICATIONS 986 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrew Macfarlane on 13 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221232923_CISR_at_INEX_2006?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221232923_CISR_at_INEX_2006?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dyslexia-and-IR?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Audio-based-Music-Similarity-Modelling?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Lu-69?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Lu-69?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Wuhan-University?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Lu-69?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Robertson-11?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Robertson-11?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-College-London?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Robertson-11?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Macfarlane-5?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Macfarlane-5?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/City_University_of_London?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Macfarlane-5?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Macfarlane-5?enrichId=rgreq-e0bd5db7e07474800f2e0f1d63f8bc5b-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIzMjkyMztBUzoxMDQzNTAyMTUwNDkyMjJAMTQwMTg5MDQzOTI0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

i

INEX 2006
Workshop

Pre-Proceedings

December 18-20, 2006
Schloss Dagstuhl

International Conference and Research
Center for Computer Science

 http://inex.is.informatik.uni-duisburg.de/2006/

Edited by
Norbert Fuhr

Mounia Lalmas
Andrew Trotman

ii

TABLE OF CONTENTS

Organizers vii
Preface ix
Acknowledgements x
Schloss Dagstuhl xi

METHODOLOGY

Choice of Parameter Values for the INEX Evaluation Metrics: Sensitivity Analysis 1
G. Kazai

XML Retrieval Evaluation Revisited: A Comparison of Metrics 3
J. Pehcevski, J.A. Thom and A.-M. Vercoustre

AD HOC TRACK

Efficient, Effective and Flexible XML Retrieval Using Summaries 6
M.S. Ali, M. Consens, X. Gu, Y. Kanza, F. Rizzolo and R. Stasiu

Using Topic-shifts in XML Retrieval at INEX 2006 21
E. Ashoori and M. Lalmas

Structured Content-Only Information Retrieval Using Term Proximity and Propagation of Title
Terms 29
M. Beigbeder

Influence Diagrams and Structured Retrieval: Garnata implementing the SID and CID models at
INEX’06 37
L.M. de Campos, J.M. Fernandez-Luna, J.F. Huete and A.E. Romero

Information theoretic retrieval with structured queries and documents 49
C. Carpineto, G. Romano and C. Caracciolo

Dynamic Element Retrieval in the Wikipedia Collection 53
C.J. Crouch, D.B. Crouch, M. Ganapathibhotla and V. Bakshi

The University of Kaiserslautern at INEX 2006 55
P. Dopichaj

Indexing “Reading Paths” for a Structured Information Retrieval at INEX 2006 62
M. Gery

GPX at INEX 2006 67
S. Geva

Robert Gordon University at INEX 2006: Adhoc Track 70
F. Huang, S. Watt, D. Harper and M. Clark

Tuning and evolving retrieval engine by training on previous INEX testbeds: preliminary work 79
G. Hubert

iii

The University of Amsterdam at INEX 2006 88
J. Kamps, M. Koolen and B. Sigurbjornsson

Using Language Models and the HITS Algorithm for XML Retrieval 100
B. Kimelfeld, E. Kovacs, Y. Sagiv and D. Yahav

CSIRO’s participation in INEX 2006 101
A. Krumpholz and D. Hawking

EXTIRP: baseline retrieval from Wikipedia 102
M. Lehtonen and A. Doucet

CISR at INEX 2006 104
W. Lu, S. Robertson and A. Macfarlane

A scalable XML component ranking algorithm 111
Y. Mass

Indian Statistical Institute at INEX 2006 Adhoc track: A Preliminary VSM Approach 118
S. Pal, M. Mitra and P. Majumder

SIRIUS XML IR System at INEX 2006: Approximate Matching of Structure and Textual
Content 121
E. Popovici, G. Ménier and P.-F. Marteau

A Method of Preferential Unification of Plural Retrieved Elements for XML Retrieval Task 134
H. Tanioka

TopX – AdHoc and Feedback Tasks 140
M. Theobald, A. Broschart, R. Schenkel, S. Solomon and G. Weikum

Supervised and Semi-supervised Machine Learning Ranking 150
J.-N. Vittaut and P. Gallinari

PF/Tijah at INEX 2006 159
T. Westerveld, H. Rode, R. van Os, D. Hiemstra, G. Ramirez, V. Mihajlovic and A.P. de Vries

XSee: Structure Xposed 160
R. van Zwol and W. Weerkamp

NATURAL LANGUAGE TRACK

Using Rich Document Representation in XML Information Retrieval 170
F. Oroumchian, F. Raja, M. Keikha and M. Rahgozar

NLPX at INEX 2006 178
A. Woodley and S. Geva

Shallow parsing of INEX Queries 179
H. Zargayouna, V. Rosas and S. Salotti

iv

HETEROGENEOUS TRACK

The Heterogeneous Collection Track at INEX 2006 189
I. Frommholz and R. Larson

Probabilistic Retrieval approaches for Thorough and Heterogeneous XML Retrieval 196
R. Larson

MULTIMEDIA TRACK

Social Media Retrieval using Image Features and Structured Text 208
D.N.F. Awang Iskandar, J. Pehcevski, J.A. Thom and S.M.M. Tahaghoghi

XFIRM at INEX 2006 - Preliminary work. Ad-hoc, Relevance Feedback and MultiMedia
tracks 221
L. Hlaoua, M. Torjmen, K. Pinel-Sauvagnat and M. Boughanem

Information Fusion in XML Document Searches by Combining Text and Image Retrieval
Techniques 231
D. Tjondronegoro, C. Lau, J. Zhang and S. Geva

Benchmarking Multimedia Search in Structured Collections 236
T. Westerveld and R. van Zwol

INTERACTIVE TRACK

Kyungpook National University at INEX 2006: Interactive Track 249
Y. Jung and H. Kim

The Interactive Track at INEX 2006 250
B. Larsen, S. Malik and A. Tombros

Context revisited - element retrieval behaviour and genre dependency 262
R. Nordlie and N. Pharo

Evaluating Tasks by Type and Form 264
E. Toms, L. Fruend, C. Jordan, T. Mackenzie, S. Toze and H. O’Brien

USE CASE TRACK

A Taxonomy for XML Retrieval Use Cases 267
M. Lehtonen, N. Pharo and A. Trotman

Inter-assessor agreement at INEX 06 273
N. Pharo, A. Trotman, S. Geva and B. Piwowarski

XML-IR Users and Use Cases 274
A. Trotman, N. Pharo and M. Lehtonen

What XML-IR Users Want 287
A. Woodley, S. Geva and S.L. Edwards

v

DOCUMENT MINING TRACK

On the unsupervised classification of text-centric XML document collections 288
A. Doucet and M. Lehtonen

XML Document Mining using Contextual Self-Organizing Maps for Structures 292
M. Kc, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, M. Gori and A. Sperduti

FAT-CAT: Frequent Attributes Tree based Classification 307
J. De Knijf

XML Structure Mapping Application to the PASCAL/INEX 2006 XML Document Mining
Track 319
F. Maes, L. Denoyer and P. Gallinari

Clustering XML Documents by Structural Similarity with PCXSS 331
T. Tran, R. Nayak and K. Raymond

Classifying XML Documents Based on Structure/Content Similarity 342
G. Xing and Z. Xia

XML Document Mining using Graph Neural Network 354
S.L. Yong, M. Hagenbuchner, A.C. Tsoi, F. Scarselli and M. Gori

APPENDIX

ADHOC TRACK

The Wikipedia XML Corpus 367
L. Denoyer and P. Gallinari

INEX 2006 Guidelines for Topic Development 373
B. Larsen, A. Trotman, et al.

INEX 2006 Retrieval Task and Result Submission Specification 381
C. Clarke, J. Kamps and M. Lalmas

INEX 2006 Relevance Assessment Guide 389
M. Lalmas and B. Piwowarski

HETEROGENEOUS TRACK

INEX’06 Het Track Retrieval Task and Result Submission Specification 396
I. Frommholz and R. Larson

MULTIMEDIA TRACK

INEX 2006 Multimedia Track Guidelines 399
T. Westerveld, R. van Zwol, et al.

vi

XML ENTITY RANKING

Entity Ranking – Guidelines DRAFT v1 413
A.P. de Vries and N. Craswell

vii

ORGANIZERS

PROJECT LEADERS

Norbert Fuhr (University of Duisburg-Essen)
Mounia Lalmas (Queen Mary University of London)

CONTACT PEOPLE

Saadia Malik (University of Duisburg-Essen)
Zoltán Szlávik (Queen Mary University of London)

WIKIPEDIA DOCUMENT COLLECTION AND EXPLORATION

Ludovic Denoyer (Université Paris 6)
Martin Theobald (Max-Planck-Institute for Informatics)

USE CASE STUDIES

Andrew Trotman (University of Otago)
Nils Pharo (Oslo University College)

TOPIC FORMAT SPECIFICATION

Andrew Trotman (University of Otago)
Birger Larsen (Royal School of Library and Information Science)

TASK DESCRIPTION

Jaap Kamps (University of Amsterdam)
Charlie Clarkes (University of Waterloo)

ONLINE RELEVANCE ASSESSMENT TOOL

Benjamin Piwowarski (Yahoo! Research Latin America)

METRICS

Gabriella Kazai (Microsoft Research Cambridge)
Stephen Robertson (Microsoft Research Cambridge)
Paul Ogilvie (Carnegie Mellon University)

RELEVANCE FEEDBACK TASK

Yosi Mass (IBM Research Lab)
Ralf Schenkel (Max-Planck-Institute for Informatics)

viii

NATURAL QUERY LANGUAGE TASK

Shlomo Geva (Queensland University of Technology)
Xavier Tannier (Xerox)

HETEROGENEOUS COLLECTION TRACK

Ingo Frommholz (University of Duisburg-Essen)
Ray Larson (University of California, Berkeley)

INTERACTIVE TRACK

Birger Larsen (Royal School of Library and Information Science)
Anastasios Tombros (Queen Mary University of London)
Saadia Malik (University of Duisburg-Essen)

DOCUMENT MINING TRACK

Ludovic Denoyer (Université Paris 6)
Anne-Marie Vercoustre (Inria-Rocquencourt)
Patrick Gallinari (Université Paris 6)

XML MULTIMEDIA TRACK

Roelof van Zwol (Yahoo! Research)
 Thijs Westerveld (CWI)

XML ENTITY SEARCH TRACK

Arjen de Vries (CWI)
Nick Craswell (Microsoft Research Cambridge)

ix

PREFACE

Welcome to the 5th workshop of the Initiative for the Evaluation of XML Retrieval (INEX)!

Now, in its fifth year, INEX is an established evaluation forum for XML information retrieval (IR), with
over 80 participating organizations worldwide. Its aim is to provide an infrastructure, in the form of a large
XML test collection and appropriate scoring methods, for the evaluation of XML IR systems.

XML IR plays an increasingly important role in many information access systems (e.g. digital libraries,
web, intranet) where content is more and more a mixture of text, multimedia, and metadata, formatted
according to the adopted W3C standard for information repositories, the so-called eXtensible Markup
Language (XML). The ultimate goal of such systems is to provide the right content to their end-users.
However, while many of today’s information access systems still treat documents as single large (text)
blocks, XML offers the opportunity to exploit the internal structure of documents in order to allow for more
precise access, thus providing more specific answers to user requests. Providing effective access to XML-
based content is therefore a key issue for the success of these systems.

2006 was an exciting year for INEX, and brought with it a lot of changes and new aspects to the evaluation.
In total nine research tracks were included in INEX 2006, which studied different aspects of XML
information access: Ad-hoc, Interactive, Use Case, Multimedia, Relevance Feedback, Heterogeneous,
Document Mining, Natural Language (NLP), and Entity Ranking. The Use Case and Entity Ranking tracks
were new for the 2006 campaign. The consolidation of the existing tracks, and the expansion to new areas
offered by the two new tracks, allows INEX to grow in reach.

The aim of the INEX 2006 workshop is to bring together researchers in the field of XML IR who
participated in the INEX 2006 campaign. During the past year participating organizations contributed to the
building of a large-scale XML test collection by creating topics, performing retrieval runs and providing
relevance assessments. The workshop concludes the results of this large-scale effort, summarizes and
addresses encountered issues and devises a work plan for the future evaluation of XML retrieval systems.

x

ACKNOWLEDGEMENTS

INEX is funded by the DELOS Network of Excellence on Digital Libraries, to which we are very thankful.
We would also like to thank the Wikipedia for providing us the XML document collection.

We gratefully thank organizers of the various tracks for their great work in setting up the new tracks, and
carrying on and refining the existing tracks. Thanks also to those involved in running and coordinating the
ad hoc track which each year involves a major effort.

As always, special thanks go to the participating organizations and people for their contributions and hard
work throughout the year! The first point of contact of many of us is either Saadia Malik or Zoltán Szlávik
for whom we, and we are sure every participant gives thanks.

We hope you have enjoyed the INEX 2006 campaign and have fruitful and stimulating discussions at the
workshop.

Norbert Fuhr, University of Duisburg-Essen
Mounia Lalmas, Queen Mary University of London

Andrew Trotman, University of Otago

December 2006

xi

SCHLOSS DAGSTUHL

Schloss Dagstuhl or Dagstuhl manor house was built
in 1760 by the then reigning prince Count Anton von
Öttingen-Soetern-Hohenbaldern. After the French
Revolution and occupation by the French in 1794,
Dagstuhl was temporarily in the possession of a
Lorraine ironworks.

In 1806 the manor house along with the
accompanying lands was purchased by the French
Baron Wilhelm de Lasalle von Louisenthal.

In 1959 the House of Lasalle von Louisenthal died
out, at which time the manor house was then taken
over by an order of Franciscan nuns, who set up an
old-age home there.

In 1989 the Saarland government purchased the
manor house for the purpose of setting up the
International Conference and Research Center for
Computer Science.

The first seminar in Dagstuhl took place in August of
1990. Every year approximately 2,000 research
scientists from all over the world attend the 30-35
Dagstuhl Seminars and an equal number of other
events hosted at the center.

http://www.dagstuhl.de/

xii

Choice of Parameter Values for the INEX
Evaluation Metrics: Sensitivity Analysis

Gabriella Kazai

Microsoft Research,
Cambridge, UK

gabkaz@microsoft.com

Abstract. This paper investigates the measures of retrieval effectiveness
employed in the ad-hoc track of INEX 2006. In particular, it looks at
how sensitive the different metrics are to various parameters and how
the choice of certain parameter values may influence the conclusions
of the evaluation. One such parameter - which is the main focus of the
investigation - is the methodology employed in generating an ideal recall-
base for the evaluation of the Focused task. The paper also examines
the correlation between the different INEX measures and traditional IR
metrics.

1 Introduction

INEX 2006 defined four retrieval tasks within the ad-hoc track: Thorough, Fo-
cused, Relevant in Context, and Best in Context retrieval. The evaluation of all
these tasks relies on the same set of relevance assessments collected from human
judges. The assessments are collected in the form of highlighted text passages
which are then converted into assessments on XML elements. The conversion in-
volves the calculation of a specificity score for each XML element that contains
highlighted text fragments. The specificity score is given as the ratio of the num-
ber of highlighted characters contained within the XML element to the length
of the element. The resulting recall-base consists of overlapping XML elements
with varying specificity scores. For example, a partially highlighted paragraph
text fragment will add, e.g., a paragraph, a section and an article XML element
to the recall-base. This recall-base can then be used directly to evaluate the
Thorough task, where systems are required to rank all elements of the collec-
tion by their estimated relevance. However, due to the introduced overlap of
XML elements, this recall-base is not directly suitable for the evaluation of the
Focused task, where systems are required to return only the “most focused” rel-
evant XML elements. This necessitates the identification of these most focused
XML elements from the collected assessments. In [2, 1] a procedure was proposed
to filter the above-derived recall-base and generate a so-called ideal recall-base,
where the overlap is removed. The methodology has since been questioned and
alternative methods have also been proposed, e.g. in [3]. The question of which
method is correct, however, remains open. In this paper, a number of different

1

methods for the construction of the ideal recall-base are proposed and compared.
More importantly, however, the paper investigates how the evaluation results are
actually affected by the choice of methodology.

In addition, a comparison is made between the measures used at INEX and
those used traditionally in IR, e.g. precision and recall.

References

1. G. Kazai and M. Lalmas. eXtended Cumulated Gain Measures for the Evaluation
of Content-oriented XML Retrieval. ACM Transactions on Information Systems
(ACM TOIS), To appear.

2. G. Kazai, M. Lalmas, and A. de Vries. Reliability tests for the xcg and inex-2002
metrics. In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik, editors, Advances in XML
Information Retrieval. Third Workshop of the INitiative for the Evaluation of XML
Retrieval INEX 2004, Schloss Dagstuhl, 6-8 December 2004, volume 3493 of Lecture
Notes in Computer Science, pages 60–72. Springer-Verlag, 2005.

3. B. Piwowarski, P. Gallinari, and G. Dupret. An extension of precision-recall with
user modelling (PRUM): Application to XML retrieval. Transactions on Informa-
tion Systems (To appear), 2006.

2

XML Retrieval Evaluation Revisited: A

Comparison of Metrics

Jovan Pehcevski1,2, James A. Thom1, and Anne-Marie Vercoustre2

1 School of Computer Science and Information Technology, RMIT University,
Melbourne, Australia

{jovanp, jat}@cs.rmit.edu.au
2 INRIA, Rocquencourt, France

Anne-Marie.Vercoustre@inria.fr

Extended Abstract

Finding the appropriate approach to evaluate XML retrieval effectiveness is the
subject of ongoing debate within the XML information retrieval (IR) research
community. Indeed, there is an abundance of metrics (and measures) that can be
used to evaluate the effectiveness of XML retrieval systems [1–3, 5–7]. However,
these metrics are based on different relevance assumptions, incorporate different
hypotheses of the expected user behaviour, and implement custom evaluation
methodologies to handle the overlap problem. This results in different XML
retrieval behaviours being measured by different metrics [9].

Over the past four years, INEX has been used as an arena to investigate
the behaviour of these different XML retrieval evaluation metrics. From 2005,
the eXtended Cumulated Gain (XCG) family of metrics were adopted as official
INEX metrics [5]. The XCG metrics are extensions of the cumulated gain metrics
initially used in traditional document retrieval [4]. For an INEX topic, an ideal

cumulated gain vector is first constructed by sorting the document components in
the recall-base in decreasing order of their relevance scores. The actual cumulated
gain vector is then compared to the ideal vector by plotting the corresponding
relevance scores against each rank position. Two monotonically increasing curves
are observed as a result, which should level out after no more relevant documents
are found. To measure the retrieval performance of an XML IR system, the
cumulated gains of the actual vector, obtained for each rank, are divided by those
of the ideal vector. The ideal retrieval performance at a rank cutoff is therefore
achieved when the obtained normalised value is 1, whereas the area between the
normalised actual and ideal curves shows the quality of the retrieval approach
(the less wide the area is, the better the retrieval performance).

We contend that the purpose of an XML retrieval system is to identify and
retrieve elements that contain as much relevant information as possible, while
minimising the amount of non-relevant information retrieved. To measure the
extent to which an XML retrieval system returns relevant information, we use
the HiXEval metric [6] that extends the traditional definitions of precision and
recall and considers only the Specificity value of a retrieved element (the amount
of highlighted relevant text in the element). This is supported by the fact that,

3

from 2006, the INEX relevance definition only uses Specificity as a relevance
dimension.3

In this paper we revisit the XML retrieval evaluation by comparing HiXEval

with the two official XCGmetrics (nxCG and ep/gr) on the Thorough and Focussed

tasks of the INEX 2006 Ad-hoc track. We do this in two ways.
First, we make direct use of the INEX evaluation methodology — its aim

to order XML retrieval runs to understand which retrieval techniques work well
and which do not — to find how the run orderings obtained by the HiXEval

measures correlate to the run orderings obtained when using measures from the
two XCG metrics.

Second, we test the reliability of the three metrics by investigating the extent
to which they are capable at distinguishing between different XML retrieval ap-
proaches. To test metric reliability, we pursue a simplification of the methodology
introduced by Sanderson and Zobel [8] that enables us to identify significance

and error rates for measures in both HiXEval and the two XCG metrics. The
methodology is as follows. We first divide the topics that belong to the official
INEX 2006 Ad-hoc topic set into four random subsets. Under each of the two
INEX 2005 Ad-hoc tasks (Thorough and Focussed), we then use these topic
subsets to pairwise compare the runs submitted by the INEX 2006 participants.
For a pair of runs on the first topic subset, a t-test is used to decide whether
the observed performance difference between the pair is significant at the 0.05
confidence level. If it is, and if the same two runs have the opposite numeric
ordering on any of the other three topic subsets, an error is recorded (the total
pairwise comparisons made for a task may vary and will depend on the number
of submitted runs). A metric is considered more reliable than another metric if
its measures identify more significant differences than do measures in the other
metric, and at the same time the obtained error rates are no worse.

References

1. A. de Vries, G. Kazai, and M. Lalmas. Tolerance to irrelevance: A user-effort evalu-
ation of retrieval systems without predefined retrieval unit. In Proceedings of RIAO

2004, pages 463–473, Avignon, France, 2004.
2. N. Gövert, N. Fuhr, M. Lalmas, and G. Kazai. Evaluating the effectiveness of

content-oriented XML retrieval methods. Information Retrieval, 9(6):699–722, 2006.
3. D. Hiemstra and V. Mihajlovic. The simplest evaluation measures for XML informa-

tion retrieval that could possibly work. In Proceedings of the INEX 2005 Workshop

on Element Retrieval Methodology, pages 6–13, Glasgow, UK, 2005.
4. K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.

ACM Transactions on Information Systems, 20(4):422–446, 2002.
5. G. Kazai and M. Lalmas. INEX 2005 evaluation measures. In Advances in XML

Information Retrieval and Evaluation: Fourth Workshop of the INitiative for the

Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle, Germany, November

3 M. Lalmas and B. Piwowarski, “INEX 2006 relevance assessment guide”. Avail-
able at: http://inex.is.informatik.uni-duisburg.de/2006/adhoc-protected/

assessments.html (INEX authentication required).

4

28-30, 2005, Revised Selected Papers, volume 3977 of Lecture Notes in Computer

Science, pages 16–29, 2006.
6. J. Pehcevski and J. A. Thom. HiXEval: Highlighting XML retrieval evaluation.

In Advances in XML Information Retrieval and Evaluation: Fourth Workshop of

the INitiative for the Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle,

Germany, November 28-30, 2005, Revised Selected Papers, volume 3977 of Lecture

Notes in Computer Science, pages 43–57, 2006.
7. B. Piwowarski and G. Dupret. Evaluation in (XML) information retrieval: Expected

precision-recall with user modelling (EPRUM). In Proceedings of the ACM-SIGIR

International Conference on Research and Development in Information Retrieval,
pages 260–267, Seattle, USA, 2006.

8. M. Sanderson and J. Zobel. Information retrieval system evaluation: effort, sensi-
tivity, and reliability. In Proceedings of the ACM-SIGIR International Conference

on Research and Development in Information Retrieval, pages 162–169, Salvador,
Brazil, 2005.

9. A. Trotman. Wanted: Element retrieval users. In Proceedings of the INEX 2005

Workshop on Element Retrieval Methodology, pages 63–69, Glasgow, UK, 2005.

5

Efficient, Effective and Flexible XML Retrieval
Using Summaries

M. S. Ali, Mariano Consens, Xin Gu, Yaron Kanza, Flavio Rizzolo, and Raquel
Stasiu

University of Toronto
{sali, consens, xgu, yaron, flavio, raquel}@cs.toronto.edu

Abstract. Retrieval queries that combine structural constraints with
keyword search are placing new challenges on retrieval systems. This
paper presents TReX—a new retrieval system for XML. TReX uses
structural summaries to efficiently retrieve elements given structural con-
straints. TReX can efficiently return either all the answers to a given
query or only the top-k answers. In this paper, we discuss our participa-
tion in the annual Initiative for the Evaluation of XML Retrieval (INEX)
workshop in the ad-hoc track. Specifically, we investigate the use of sum-
maries and the flexibility they provide when dealing with structural con-
straints. We present an algorithm for retrieval using summaries. Finally,
experimental results are presented showing that TReX answers queries
efficiently and effectively.

1 Introduction

Recent research efforts have combined the structured data management capabili-
ties of databases with the powerful keyword search capabilities of information re-
trieval (IR) systems. One of the best known of these research efforts is the INEX
[1] initiative. INEX is a forum dedicated to research in information retrieval
from collections of XML documents. In XML retrieval, queries are combinations
of keywords (content queries), structural hints (vague queries) and structural
constraints (strict queries). Query responses are composed of XML document
fragments (i.e., specific elements) that satisfy the structural conditions and are
returned ranked according to relevance criteria based on the content and struc-
tural components of the query.

To assess the effectiveness of the ranked answers returned by XML retrieval
systems, human judgments are collected for the answers to standard queries,
which are called topics, on XML collections. The collections are shared among
all of the INEX participants. Based on the collections, INEX participants pro-
pose and agree on the topics for the human judges. System implementors develop
their ranking criteria and assess the quality of the answers from their systems
against the human judgments. Participants’ ranking criteria generally use well-
established IR techniques for content scoring that have been extended to incor-
porate the structural conditions specified in the topic. We refer to this extension
as structural scoring. The XML retrieval community is just starting to develop an

6

understanding of structural scoring. We expect that in the coming years a wide
range of different techniques will be proposed and assessed. To this effect, our
efforts have concentrated on developing an XML retrieval system that supports
flexible structural scoring. We believe that this will foster more experimenta-
tion and will help move forward the state-of-the-art over the long term as we
begin to understand the different ways that structure is used in XML retrieval.
Our contention is that XML retrieval systems must be capable of efficiently
combining IR evaluation techniques with new structural ranking capabilities.
There are still a wide spectrum of challenges to overcome. As an example, this
is illustrated in the strict interpretation of structural constraints because these
constraints have the same efficiency demands on the system as those placed on a
structured XML query engine (i.e., those posed on an XPath or XQuery capable
processor). TReX is a step toward overcoming these challenges.

In this paper we describe the techniques used by the TReX system to sup-
port efficient, effective and flexible XML retrieval. TReX retrieves relevant XML
fragments by simultaneously using indexes on paths in the XML (summaries)
and indexes on keywords (inverted lists). Previous work has established the ad-
vantages of using summaries for structured XML queries [6]. This paper applies
summaries to content and vague structure retrieval queries. Two methods for
computing queries are considered. In the exhaustive method, queries are com-
puted directly from the indexes. Our second method is meant for quickly com-
puting the top-k answers to a query. It relies on the exhaustive method to first
pre-compute and store lists of ranked elements for each query keyword and path
expression. Then, the system employs the threshold algorithm (TA) for efficiently
combining the ranks according to the keywords in the query. We provide exper-
imental results showing the efficiency and the effectiveness of TReX ’s use of
summaries in support of flexible structural scoring in XML retrieval.

Several proposals in the literature extend the traditional keyword-style re-
trieval to the XML model [8, 12, 13]. Vague structural conditions were introduced
in [22] and complemented with full-text conditions in [3, 4]. A query algebra for
IR style processing of XML data was introduced in [5]. Although only for keyword
queries, XRANK [12] is the only system that provides efficient support for finding
the top-k results. Other recent proposals for XML ranked retrieval include [15]
and [17]. The former uses dataguides and TA-style top-k algorithms [10], but
differs from our work in that their experiments are limited to DB-like queries
rather than XML retrieval queries. In contrast, [17] focuses on efficient evalu-
ation of approximate structural matches without considering keyword search.
The closest work to ours is TopX [23]. We follow the baseline top-k algorithm
described in that work, but we do not use their probability predictor function
nor invoke costly random access to resolve structural constraints. Our scoring
model is similar to the model in [23]. The main difference is that tags (element
names) in TopX are the only structural constraints influencing the score whereas,
in TReX , the scoring function uses more flexible summary-based constraints.

The structure of the paper is as follows. Section 2 introduces the retrieval
queries supported by the TReX system. Section 3 introduces summaries. Section

7

4 describes the evaluation mechanisms used by TReX . Finally, Section 5 presents
experimental evidence of the effectiveness and efficiency of TReX .

2 Retrieval Queries

TReX is designed for evaluating NEXI queries [24] over a given XML corpus.
NEXI (Narrowed Extended XPath I) is a query language for specifying retrieval
queries. It was devised and has been used in the context of the Initiative for
the Evaluation of XML Retrieval (INEX)[21]. NEXI is built upon XPath [7].
On the one hand, it narrows XPath by excluding function symbols and some
axes. On the other hand, it extends XPath with the function about(), which
denotes a vague interpretation of its input. A NEXI query is composed of two
types of constraints, structural and textual. The about() function can be applied
to both. The structural constraints are expressed in XPath-like syntax and the
textual constraints are keywords.

Example 1. Consider the following NEXI query
//article[about(., XML retrieval)]//sec[about(., inverted list)].
This query specifies a search for sections that are relevant to the keywords “in-
verted list” that appear in articles that are relevant to “XML retrieval”.

The answer to a query consists of elements that satisfy the structural and
textual constraints. The elements, in an answer, are ranked according to their
relevance to the search. In general, elements that contain the specified search
terms should be ranked higher than elements that do not. For instance, the
answer to the query in Example 1 are sec elements that are descendants of
article elements, i.e., elements that are in the answer to the XPath expression
//article//sec. All sec elements in the answer should be ranked according to
their relevance to the keywords “inverted” and “list”, and the relevance of their
ancestor article elements to the keywords “XML” and “retrieval”.

The scoring function TReX uses is a version of the Okapi BM25 formula [20]
modified for XML. The TReX function is a generalization of the scoring function
employed in the TopX query engine [23]. Its novelty is that the score of an
element is given w.r.t. a set S of elements specified by the structural constraints
of the query. Before presenting the formula, we provide some necessary notation.
We denote by tf (t, e) the term frequency of the term t in the element e. This
function returns the number of occurrences of t in the textual content of e, where
the textual content is considered a bag of terms. We denote by ef S(t) the element
frequency of a search term t, w.r.t. a set S of elements. This function returns
the number of elements that contain t, among the elements in S. The length of
an element e, denoted length(e), is the number of words in the textual content
of e. That is, length(e) =

∑
{t|t is a term in e} tf (t, e). Finally, we denote the size

of a set S by |S|.
Given a list t1, . . . , tm of terms, an element set S and an element e in S, the

BM25 score of e is given by the following formula.

8

scores(e | t1, . . . , tm) =
m∑

i=1

(k1 + 1) · tf (ti, e)
K + tf (ti, e)

· log
(
|S| − ef S(ti) + 0.5

ef S(ti) + 0.5

)
where

K = k1

(
(1 − b) + b · length(e)

avg{length(e′) | e′ ∈ S}

)
Okapi BM25 was originally developed using statistics of all documents in the
corpus. In the context of XML, BM25 has been modified to use statistics at the
granularity of elements. In comparison, TReX uses statistics within groups of
elements defined by structural constraints. More formally, our BM25 formula
uses frequency statistics w.r.t. an element set S rather than using only statistics
w.r.t. entire documents or individual elements. Usually, S is taken to be the set
of all elements satisfying the structural constraints of the query. For instance,
in the query from Example 1, S contains all the elements in the answer to the
XPath expression //article//sec.

As tuning parameters we use the same values used in TopX. Thus, we set
k1 to 10.5 and b to 0.75. Note that k1 controls the non-linear term-frequency
effects, and b controls the element-length normalization [20]. In order to answer
retrieval queries efficiently, TReX uses inverted lists for finding elements that
contain the keywords, and summaries for finding elements that comply with the
structural constraints. Summaries are discussed in the next section.

3 Structural Summaries

Structural summaries are data structures used for locating specific fragments of
the data, such as nodes and subtrees. They group together elements that are
indistinguishable w.r.t. a query or a class of queries in some XML query lan-
guage. By accessing relevant data directly, summaries help to avoid sequential
scans of entire documents during query evaluation. In addition, they can be
used to describe the instance by keeping record of its structural properties, such
as hierarchical relationships, degree of nesting, and label paths. A typical sum-
marization of the XML tree structure is a labeled tree that describes its labels
and edges in a concise way. In addition, XML tree nodes are partitioned into
equivalence classes according to their labels or the label paths they belong to.
Each node in the summary tree has one such equivalence class (usually called
its extent in the literature) associated to it.

The partition can be induced by different criteria. For instance, the tag sum-
mary clusters together nodes with the same tag. The tag summary has as many
extents (equivalence classes) as different tags are in the XML tree. The incoming
summary, in contrast, partitions nodes based on the label paths from the root to
the nodes, i.e., the incoming label paths. Thus, nodes with the same incoming
label path will belong to the same extent. It is easy to see that the extents of the
incoming summary are in fact a refinement of the tag summary extents, because

9

Fig. 1. Fragment of the incoming and alias incoming summary trees for the INEX
IEEE collection

in order for two nodes to have the same incoming label path they also need to
have the same label. The left-hand side of Figure 1 shows a fragment of the
incoming summary tree for the INEX IEEE collection. (The complete incoming
summary with no aliases has 11563 nodes. For the tag summary, the number of
nodes is 185. The total size of the alias incoming summary is 7860. The alias
tag summary has 145 nodes.) In Figure 1, the numbers below the nodes are
the summary node identifiers, or sid’s for short. For instance, all XML nodes
that end with the path books/journal/article belong to the same incoming
summary extent and, according to our summary in Figure 1, have sid 7. A sid
not only identifies a summary node but also includes all XML nodes that belong
to the summary node’s extent. Note that if two XML nodes have the same sid,
then by definition one node cannot encapsulate the other.

In an XML retrieval environment, oftentimes different elements with different
tags represent the same type of information. For instance, article sections in the
IEEE collection are in some places referred to as sec and in other places as ss1
or ss2. Since sec, ss1 and ss2 are semantically the same. For a summary to
reflect that fact, we make use of the alias mapping provided by INEX to replace
all synonyms by their alias (sec in our example). The right-hand side of Figure
1 shows a fragment of the alias incoming summary tree for the INEX IEEE
collection.

An alias mapping collapses different summary nodes in the non-aliased sum-
mary into a single summary node in the aliased summary. This collapse can
happen for two different reasons. The first one is that nodes are combined into
one because their tags are aliases of the same tag. For instance, nodes with sid’s
82 and 281 in the incoming summary of Figure 1 are combined into summary
node sid 82 in the alias incoming because tags ss1 and ss2 are mapped to
(aliased with) sec. This type of collapse can happen in both tag and incoming

10

summaries. The second type of collapse is only possible in the incoming sum-
mary: two nodes collapse because their ancestors collapse. This is the case of
nodes with sid’s 84 and 283 on the left-hand side of the figure. When nodes with
sid’s 82 and 281 were combined into one, the incoming label path to nodes with
sid’s 84 and 283 became the same and thus the two nodes were also combined
into one.

Our system generates an XPath expression for each sid, which computes pre-
cisely the set of document nodes in its extent. Attaching an arbitrary XPath
expression to each sid gives us the ability to precompute arbitrary path condi-
tions in our summaries. In addition, the use of XPath provides us with a uniform
mechanism for creating and manipulating TReX summaries.

Since our system uses sid’s internally, changing the summary only impacts the
sid’s used during query evaluation. This provides the flexibility to use different
summaries transparently in TReX . Any summary proposal in the literature can
in fact be used in TReX. Examples of such proposals are region inclusion graphs
(RIGs) [9], dataguides [11], the T-index family [18], ToXin [19], A(k)-index [16],
F&B-Index and F+B-Index [14]. RIGs are examples of tag summaries whereas
dataguides, 1-index, ToXin, and A(k)-index are incoming summaries. All these
proposals can be expressed in our system using XPath expressions, which gives
us the ability mix and match them in our summaries.

3.1 NEXI Evaluation Using Summaries

We now explain how to use structural summaries for evaluating retrieval queries.
The evaluation of a NEXI retrieval query in TReX is done in two phases: trans-
lation and retrieval.

In the translation phase, each path p in the query from the root to an about()
function is translated to a set of sid’s and a set of terms. Let Ep be the set of
elements in the result of evaluating p on all the documents in the corpus. The
set of sid’s consists of all the summary nodes whose extent has a non-empty
intersection with Ep. The set of terms consists of all the terms that appear in
the about() function at the end of each path p. For example, consider the query
in Example 1 over the INEX IEEE collection, and the incoming summary with
aliases shown on the right-hand side of Figure 1. Then, the set of sid’s for the
path //article//sec is {46, 82, 89, 493, 607, 619, 630, 761, 1995, 2239}. The set
of terms is {inverted, list}. For the path //article that also leads to an about()
function, the set of sid’s is {7} and the set of terms is {XML, retrieval}.

In the retrieval phase, elements are retrieved according to the sets of sid’s
and terms generated in the translation phase. For a set of sid’s [sid1, . . . , sidm]
and a set of terms [t1, . . . , tn], the system retrieves the elements that (1) are
in the extent of a node with sid in sid1, . . . , sidm, and (2) contain at least one
of the terms t1, . . . , tn. For each such element e, term and element frequencies
are computed and a BM25 score scores(e | t1, . . . , tn) is calculated, where S
is the extent in which e is a member. The following section discusses how the
algorithms of the retrieval phase were implemented in TReX.

11

Elements(SID, docID, endPos, length)

PostingLists(token, docID, offset, postingDataEntry)

RPL(token, iR, SID, docID, endPos, rplDataEntry)

Fig. 2. The schemes of the tables TReX stores.

4 Exhaustive Retrieval Algorithm

In this section, we describe the exhaustive retrieval algorithm (ERA) for the
retrieval phase of query evaluation. As explained in Section 3.1, the input to
ERA consists of a list of sid’s and a list of terms. An element of a document in
the corpus is considered relevant , if (1) it is in the extent of one of the given sid’s
and (2) it contains at least one of the given terms. ERA finds all the relevant
elements. In addition, for each relevant element e and for each term t among
the given terms, ERA computes the frequency of t in e, (i.e., the number of
times that t appears in e). These term frequencies are the basis for ranking the
elements of the result, as was discussed in Section 2. Note that ERA can be used
not only with BM25 but also with any other ranking method that is based on
term frequency.

For evaluating queries, ERA uses a structural summary of the corpus and
inverted lists. An inverted list stores all the positions where each term appears.
Positions are represented in TReX as pairs of a document identifier and an offset
from the beginning of the document. Summaries and inverted lists are stored as
indexed relational tables. The following section describes these tables, and in
Section 4.2 we present ERA.

4.1 Data Structures

In TReX, the structural summary and the inverted lists are stored in two indexed
tables named Elements and PostingLists. The schemes of these tables are
shown in Figure 2. In the figure, keys are underlined. For each table, an index
provides ordered sequential access to the tuples according to the keys.

The Elements table contains an entry for each element in the corpus. SID is
the summary id of the element. The field docID holds the identifier of the docu-
ment in which the element appears. The endPos is the position in the document
where the element ends, and length is the length of the element. Note that we
can compute the start position of each element by subtracting the length from
the end position.

The PostingLists table is actually the inverted lists. For each term, all the
positions where this term appears are stored in the table. The position of the
term is represented by the identifier of the document in which the term appears
and an offset from the beginning of this document. The token field is the token
(i.e., term) that the entry represents. In each tuple, the postingDataEntry

12

is a list of the form doc1, o
1
1, . . . , o

1
i1

, doc2, o
2
1, . . . , o

2
i2

, . . . , dock, ok
1 , . . . , ok

ik
where

doc1, . . . , dock is a sorted list of document identifiers, and each oj
1, . . . , o

j
ij

is a
sorted list of offsets indicating the positions where the token appears in the
document docj . The posting list may become too long for storing it in a single
tuple. So it may be divided and stored across several tuples. In order to access
the parts of the posting list in order of position, the fields docID and offset in
postingDataEntry are part of the key.

For technical reasons, we also add a maximal dummy position denoted m-pos
to the end of the last postingDataEntry list of each term. The position m-pos is
maximal in the sense that no real position can exceed it. This is done to detect
the end of each posting list.

4.2 The Exhaustive Algorithm

We now show how ERA computes a query result from the data in the Elements
and PostingLists tables. The main code is presented in Figure 3. Before we
explain the code, we describe the iterators used in ERA. There are two principle
iterators; one for the Elements table and the second for the PostingLists table.
The first iterator searches over the index of Elements. For a sid s, let iterator Is

return all the positions of relevant elements in s in ascending order of (docID,
endPos). The function call Is.firstElement() returns the first tuple in Elements
whose sid is equal to s. The function call Is.nextElementAfter(p) returns the
element with the lowest position greater than p in extent s where p is a tuple
of the form (docID, endPos). If no element is found then a dummy element is
returned—an element with end position equal to m-pos and length equal to zero.
The second iterator searches over the index of PostingLists. For a given term
t, an iterator It over the posting list of t is created. It contains a single function
It.nextPosition() that successively returns the next position in the posting list
of t.

We now explain the code of ERA given in Figure 3. The input to the algo-
rithm consists of a list of sid’s sid1, . . . , sidm and a list of terms t1, . . . , tn. The
initialization of the algorithm involves creating variables for results and the nec-
essary iterators. Lines 1 and 2 creates an empty list L to store the results of the
computation and an array C of size m× n to keep intermediate count values of
appearances of terms in elements. The purpose of C is to record for m different
elements how many times each term among t1, . . . , tn has been seen in these
elements. For each sid and term, iterators over Elements and PostingLists re-
spectively, are constructed in lines 3–8 and the initial values from these iterators
are stored in vectors ei and posj , respectively.

After the initialization, the algorithm iterates over all the positions where one
of the given terms appears. In each iteration, the lowest position not handled
so far is being considered. We denote this position by posx and the term that it
refers to by tx. For the term tx and each one of the elements that are currently
being processed, the algorithm checks whether these elements contain tx and
updates C accordingly. More precisely, when an element ei is being processed,
it has three possible relationships with tx, which we explain next.

13

ERA((sid1, . . . , sidm), (t1, . . . , tn))

Input: A list of sid’s and a list of terms
Output: The relevant elements with their term frequencies

1: let L be a new empty list
2: let C[m][n] be an array of size m× n having 0 in all the cells
3: for i = 1 to m do
4: create a new iterator Isidi over elements in the extent of sidi

5: ei ← Isidi .firstElement()
6: for j = 1 to n do
7: create a new iterator Itj over the positions of tj

8: posj ← Itj .nextPosition(tj)
9: repeat

10: let x be the index for which posx = min{pos1, . . . , posn}, and let tx be
the term that starts in position posx

11: for i = 1 to m do
12: if posx < start(ei) then
13: {do nothing}
14: else if start(ei) < posx < end(ei) then
15: C[i][x]← C[i][x] + 1
16: else if end(ei) < posx then
17: if there is a non-zero cell in the row C[i][1, . . . , n] then
18: create a new list tfei

from the n values C[i][1, . . . , n]
19: add (ei, tfei

) to L
20: reset all the cells C[i][1, . . . , n] to 0
21: ei ← Isidi .nextElementAfter(posx)
22: if start(ei) < posx < end(ei) then
23: C[i][x]← C[i][x] + 1
24: posx ← Itx .nextPosition()
25: until for all the terms, the maximal position m-pos has been reached
26: return L

Fig. 3. Retrieving the relevant elements.

If the element ei starts after posx, then tx is not contained in ei and the counts
in C should not be changed. Yet, at this point, term appearances in positions
greater than posx may be inside ei. Thus, ei still needs to be processed. In this
case, no action is being done (lines 12–13). If posx is between the start position
of ei and the end position of ei then we encountered an appearance of tx inside
ei. In this case, the counting in C is updated (lines 14–15).

If the element ei ends before posx, then there is no need to change C. Further-
more, since all the following appearances of terms will be in a position greater
than posx, at this point in the run, the counting of frequencies for ei is complete
and we can replace ei with the next element from the extent of sidi. If at least
one of the term frequencies of ei is greater than zero, then we add ei and its
frequencies to the list L (lines 17–20). We then replace ei with the next element

14

Fig. 4. Positions of elements in the extent of the sid’s sid1, sid2 and of appearances of
the terms t1 and t2.

in the extent of sidi (line 21) and start the counting for this element. Note that
the term being processed can be inside the new element and in this case we need
to immediately update the counting for this new element (lines 22–23).

When the dummy maximal position has been reached for all terms, the com-
putation is complete and L can be returned. TReX implements ERA using
iterators so that relevant elements can be provided as soon as the computation
of their term frequencies is complete. We do not provide the details in this paper.
In post-processing, we compute the BM25 scores for the retrieved elements and
sort them by their respective scores.

4.3 Relevance Posting Lists

ERA finds the relevant elements and, initializes them with their term frequencies,
and sorts them by their end position. After computing the BM25 score of each
element and sorting the elements by these scores, the result is stored because
these results can be used to efficiently evaluate the query as a top-k query. TReX
stores these results as relevance posting lists (RPLs) of the terms. An RPL of a
term t is a list of elements that contain t, with each element’s relevance score and
sid. Elements in an RPL are sorted according to their relevance, in descending
order. Rather than physically storing and maintaining many different lists, in
TReX, all RPLs are stored in a single relation named RPL. The schema of this
relation is shown in Figure 2. Each tuple in the RPL relation contains part of
the RPL of some term t. The term t is stored in the token field, and the RPL
(or a part of it) is stored in the rplDataEntry field. The field rplDataEntry
holds a list of 5-tuples, where each 5-tuple identifies an element and consists
of (1) a relevance score, (2) an sid, (3) a document identifier, (4) an offset
to end position, and (5) a length. The elements in rplDataEntry are sorted
in a decreasing order according to their relevance score. For each 5-tuple, the
combination of sid, document identifier and offset-to-end are used as unique
identifiers for elements. The attributes iR, SID, docID and endPos in RPL contain
the values of the first element in rplDataEntry for ordering divided lists.

In TReX, given a list sid1, . . . , sidm of sid’s and a list t1, . . . , tn of terms,
RPLs can be used to efficiently compute top-k answers. Let t be one of the terms
t1, . . . , tn. The top-k relevant elements w.r.t. t and sid1, . . . , sidm can be easily
retrieved from the RPL of t by iterating over this RPL and selecting the top
elements whose sid is among sid1, . . . , sidm. Note that the elements are provided

15

sorted by their rank. We can then use threshold algorithm (TA), similar to the
one used in TopX [23], in order to combine for each element its scores in the n
RPLs, and return the top-k answers. Note that this algorithm is a version of the
TA algorithm proved by Fagin et al. [10] which is instance optimal in terms of
the number of readings from the lists.

5 Experimental Results

We experimented with TReX in order to measure the efficiency and effectiveness
of our retrieval methods. Two other goals of our experiments were to investigate
the influence of using different summaries on the system’s performance and to
compare the running time of ERA against TA. We implemented TReX in Java
and used Berkeley DB (BDB) for the indexed tables. Our initial experiments
were conducted over the IEEE collection provided in the INEX 2005 benchmark.
This collection contains 16819 XML documents, and it has a size of 0.76GB. For
the IEEE collection, the sizes of the tables Elements and PostingLists, stored
in BDB, were 1.52GB and 8.05GB, respectively. Follow up experiments were
conducted on the Wikipedia collection which contains approximately 645,719
documents and has a size of 5.01GB. The follow up experiments used the same
basic configuration as was used for the IEEE collection.

Table 1. NEXI Queries and Translations for IEEE.

Query ID NEXI Query

203 sec[about(., code signing verification)]

223 article[about(.//sec, wireless ATM multimedia)]

233 article[about (.//bdy, synthesizers) and about (.//bdy, music)]

236 article[about(., machine translation approaches -programming)]

260 bdy//*[about(., model checking state space explosion)]

Query ID Tag sid’s Incoming sid’s Keywords

203 6, 40
7, 46, 82, 89, 493, 607, 619,

630, 761, 1995, 2239
code, signing, verification

223 6, 40
7, 46, 82, 89, 493, 607, 619,

630, 761, 1995, 2239
wireless, ATM, multimedia

233 6,32 7,33 synthesizers, music

236 6 7 machine, translation, approaches

260 6, 32 7, 33 model, checking, state, space, explosion

We tested TReX on many INEX queries; however, we report here only the
detailed results of five arbitrary queries from IEEE that seemed to us as rep-
resenting the typical behavior of all the other queries. Similarly, the follow up
results from five arbitrary queries from Wikipedia show that performance with
a larger corpus was comparable to IEEE results. Table 1 shows the queries we
chose and the translation of the IEEE queries for both the tag summary and
incoming summary. Table 2 shows the queries we chose and the number of sid’s
used in the query translations for the incoming summary.

16

Table 2. NEXI Queries and Number of sid’s in Translations for Wikipedia

Query
ID

NEXI Query
of
sid’s

291 article//figure[about(., Olympian god goddess)] 1388
292 article//figure[about(., Renaissance painting Italian Flemish -French -German)] 1388
346 article[about(.,+unrealscript language api tutorial)] 4
356 article[about(.,natural language processing) and about(.,information retrieval)] 4
388 article[about(.,rhinoplasty)] 4

Table 3. Evaluation Time (in seconds) ERA Using Incoming and Tag Summaries for
IEEE.

Query ID
Tag

Summary
Incoming
Summary

Efficiency
Improvement

203 4873 1651 66%
233 1991 696 65%
236 5643 1812 68%
260 8860 1640 81%

Table 4. Evaluation Time (in seconds) TA Using Incoming Summary for IEEE.

Query ID top10 top50 top100 top500 top1000 top1500
203 28 61 93 227 312 486
233 0.59 0.94 0.98 1 0.77 0.73
236 4 16 21 41 53 60
260 14 59 92 237 359 460

Table 5. Evaluation Time (in seconds) ERA Using Incoming for Wikipedia.

Query ID
Incoming
Summary

291 1953
292 3435
346 1092
356 1283
388 637

17

The Wikipedia results in Table 5 were generated using incoming summaries
with alias. The structure of the summary tree for Wikipedia is significantly
larger and more complex than that of the IEEE corpus. The Wikipedia contains
about 6 times more sid’s than IEEE. The evaluation times for Wikipedia were
in the same scale of magnitude as IEEE. The IEEE topics were structurally
constrained to article bodies and article sections. Wikipedia queries 291 and
292 were constrained to figures in articles. Wikipedia queries 346, 356 and 388
were structurally constrained to articles. From these results, we conjecture that
the factors in determining the running time of queries are the number of sid’s
considered, the size of the sid summary extents, and, most importantly, the
number of matching tokens in the corpus.

Although we evaluated our queries on both the IEEE collection and Wikipedia,
we measure the effectiveness of our retrieval techniques only on the IEEE collec-
tion. The results are presented in Tables 3 and 4. We compared our results to the
results of other INEX participants. This is shown below in Figure 5. We ran the
comparisons using the INEX Evaluation Package EvalJ[2]. In this comparison,
recall and precision of query results are computed based on ranking performed
by humans.

(a) Query 203 - Tag Sum-
mary

(b) Query 203 - Incoming
Summary

(c) Query 223 - Tag Sum-
mary

(d) Query 223 - Incoming
Summary

Fig. 5. Comparative of TReX effectiveness among other INEX 2005 participants.

18

Figure 5 shows the comparative effectiveness of two representative queries,
Query 203 and Query 223 (listed in Table 1), using the tag summary and the in-
coming summary. The results of TReX are depicted with a bold line whereas the
results of other INEX participants are depicted with light gray lines. Intuitively,
each line shows the precision gained, as a function of the recall, for a single sys-
tem. That is, a line of a system S going through a point (r, p) means that for a
given k the top-k answers have a recall of r, and the precision of these k answers
is p. The graphs in Figure 5 show that the incoming summary provides better
results than the tag summary; however, the superiority of the incoming summary
is not always the case. Note that, for Query 203, when using the incoming sum-
mary, 50% of the elements a human would include in the answer were given the
highest scores by TReX, which means that they could be retrieved with 100%
precision. Our tests suggest that the effectiveness of TReX is comparable to, and
in many cases better than, the effectiveness of other systems that participated
in INEX.

An important conclusion from our experiments is that summaries have a
major influence on the efficiency and effectiveness of the system. Specifically,
TReX had performed better with incoming summary than with tag summary.
One explanation of this is that the tag summary does not take into account
the ancestor-descendant relationship among elements, and thus, the partition it
provides for the elements is coarser than the partition provided by the incoming
summary. This means that every sid represents more elements, and so, more
elements need to be processed by ERA. Also, using summaries causes query
results to be less accurate because the structural constraints are evaluated in
a flexible way that stems from the type of summary employed. We leave the
question of how to choose an appropriate summary for future work.

6 Conclusion

In this paper we presented TReX—a system for efficient XML retrieval us-
ing summaries. The main contribution of our work is showing how to utilize
summaries for a vague interpretation of structural constraints: either when all
the answers to a query must be returned or when only the top-k answers are
needed. We tested our retrieval algorithm on data and queries from INEX. The
tests show that our retrieval method is efficient and effective. Our results provide
a new and general perspective to structural evaluation in INEX. The flexibility
and efficiency of the approach is coupled with a general framework so XML sum-
maries can be easily incorporated into any XML retrieval system. Future work
includes a study of the potential of using summaries for answering queries under
a strict interpretation of the structural constraints. It also includes a study of
the relationship between exhaustive retrieval and top-k query answering.

References

1. INEX: Initiative for the evaluation of XML retrieval.
http://inex.is.informatik.uni- duisburg.de:2005, 2005.

19

2. EvalJ: INEX evaluation package. http://evalj.sourceforge.net, 2006.
3. S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying structured text in an XML

databases. In Proc. SIGMOD Conf., pages 4–15, 2003.
4. S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: a full-text search

extension to XQuery. In Proc. WWW Conf., pages 583–594, 2004.
5. S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: flexible structure

and full-text querying for XML. In Proc. SIGMOD Conf., pages 83–94, 2004.
6. A. Barta, M. P. Consens, and A. O. Mendelzon. Benefits of path summaries in an

xml query optimizer supporting multiple access methods. In Proc. VLDB Conf.,
pages 133–144, 2005.

7. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0.
http://www.w3.org/TR/xpath, 1999.

8. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine
for XML. In Proc. VLDB Conf., pages 45–56, 2003.

9. M. P. Consens and T. Milo. Optimizing queries on files. In Proc. SIGMOD Conf.,
pages 301–312, 1994.

10. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proc. PODS Conf., pages 102–113, 2001.

11. R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-
mization in semistructured databases. In Proc. VLDB Conf., pages 436–445, 1997.

12. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In Proc. SIGMOD Conf., pages 16–27, 2003.

13. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In Proc. ICDE Conf., pages 367–378, 2003.

14. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for
branching path queries. In Proc. SIGMOD Conf., pages 133–144, 2002.

15. R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On the
integration of structure indexes and inverted lists. In Proc. SIGMOD Conf., pages
779–790, 2004.

16. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity
for indexing paths in graph-structured data. In Proc. ICDE Conf., pages 129–140,
2002.

17. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive processing of
top-k queries in XML. In Proc. ICDE Conf., pages 162–173, 2005.

18. T. Milo and D. Suciu. Index structures for path expressions. In Proc. ICDT Conf.,
pages 277–295, 1999.

19. F. Rizzolo and A. O. Mendelzon. Indexing XML data with ToXin. In Proc. WebDB
Workshop, pages 49–54, 2001.

20. S. E. Robertson and S. Walker. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In Proc. SIGIR Conf., pages
232–241, 1994.

21. M. L. S. Malik, G. Kazai and N. Fuhr. Overview of INEX 2005. In Proc. INEX
Workshop, 2005.

22. T. Schlieder and H. Meuss. Querying and ranking XML documents. Journal of the
American Society for Information, Science and Technology, JASIST, 53(6):489–
503, 2002.

23. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine
for TopX search. In Proc. VLDB Conf., pages 625–636, 2005.

24. A. Trotman and B. Sigurbjornsson. Narrowed extended XPath I (NEXI). In Proc.
INEX Workshop, pages 16–39, 2004.

20

Using Topic-shifts in XML Retrieval at

INEX 2006

Elham Ashoori and Mounia Lalmas

Queen Mary, University of London
London, E1 4NS, UK

elham,mounia@dcs.qmul.ac.uk

Abstract. This paper describes the retrieval approaches used by Queen
Mary, University of London in the INEX 2006 adhoc track. In our partic-
ipation, we mainly investigate element-specific smoothing method within
the language modelling framework. We adjust the amount of smoothing
required for each XML element depending on its number of topic shifts
to provide a focused access on Wikipedia collection.

1 Introduction

In this paper we describe the Queen Mary, University of London’s participation
in the INEX 2006 adhoc track.

To score XML elements according to how exhaustive and specific they are
given a query, various sources of evidence have been exploited. These include the
content, the logical structure represented by the XML mark-up and the length
of XML elements. In this work, we consider a different source of evidence, the

number of topic shifts in an XML element. Our motivation stems from
the definition of a relevant element at the appropriate level of granularity in
INEX, which is expressed in terms of the “quantity” of topics discussed within
each element. We therefore propose to use the number of topic shifts in an XML
element, to express the “quantity” of topics discussed in an element as a mean
to capture specificity.

For the Thorough task, we experiment with two different ways of smoothing,
element-dependent smoothing and fixed approach within the language modeling
framework. We incorporate the number of topic shifts in the smoothing process.
We also compare topic shifts to element length, by incorporating each of them
as prior probability of relevance in a retrieval setting and examining their effects
on the effectiveness.

For the Focused task, we apply a post-filtering algorithm to remove overlap-
ping elements. We follow similar approaches for thorough task and focused task
to investigate the differences of the two tasks.

For the All In Context task, we took our focused runs, reordered the first
1500 elements in the list such that results from the same article are clustered
together For the Best In Context task, we investigate whether retrieving the
most focused element in a relevant article as the best entry point is a useful
approach.

21

The paper is organised as follows. In section 2, we define topic shifts and how
we calculate it. Section 3 and 4 describe the methodology and the experimental
setting used in our investigation. The experiments and results are discussed in
Section 5. Section 6 concludes the paper.

2 Topic shifts

In this section, we describe how we measure the number of topic shifts of the ele-
ments forming a XML document. For this purpose, both the logical structure and
a semantic decomposition of the XML document are needed. Whereas the logical
structure of XML documents is readily available through their XML markup,
their semantic decomposition needs to be extracted. To achieve that, we apply
a topic segmentation algorithm based on lexical cohesion, TextTiling, which has
been successfully used in several IR applications, is TextTiling1 [1]. The under-
lying assumption of topic segmentation algorithms based on lexical cohesion, is
that a change in vocabulary signifies that a topic shift occurs. This results in
topic shifts being detected by examining the lexical similarity of adjacent text
segments. TextTiling is a linear segmentation algorithm which considers the dis-
course unit to correspond to a paragraph and therefore subdivides the text into
multi-paragraph segments.

The semantic decomposition of an XML document is used as a basis to
calculate the number of topic shifts in each XML element forming that document.
We consider that a topic shift occurs (i) when one segment ends and another
segment starts, or (ii) when the starting (ending) point of an XML element
coincides with the starting (ending) point of a semantic segment.

The number of topic shifts in an XML element e in document d is defined as:

score(e, d) := actual topic shifts(e, d) + 1 (1)

where actual topic shifts(e, d) are the actual occurrences of topic shifts in el-
ement e of document d. We are adding 1 to avoid zero values. For simplicity,
when we refer to the number of topic shifts, we shall be referring to score(e, d).

With the above definition, the larger the number of topic shifts – i.e. the
larger the score(e, d) – the more topics are discussed in the element, i.e the
content of element is less focussed with respect to the overall topic discussed in
the element.

By considering the number of topic shifts occurring in an element instead
of the number of topics discussed, we are able to distinguish the cases where
the topic shift occurs not within the actual content of an element, but at its
boundaries.

3 Retrieval Framework

For our experiments, we have implemented retrieval approaches for ranking XML
elements based on a statistical language modelling approach [2]. Language mod-

1 http://elib.cs.berkeley.edu/src/texttiles/

22

elling approaches have shown satisfactory results in content-oriented XML re-
trieval (e.g. [3, 4]). The language modelling approach allows us to combine “non-
content” features of elements (or documents) (e.g. length, topic shifts) with the
scoring mechanism.

If we estimate a language model for each element, then the relevance of
an element e to a given query q is computed as how likely the query can be
generated from the language model for that element. We rank elements based
on the likelihood for a query q = (t1, t2, ..., tn) to be generated from an element
e as:

P (t1, .., tn|e) = P (e) ∗

n∏

i=1

(λ
e
P (t

i
|e) + (1 − λ

e
)P (t

i
|C)) (2)

where

– t
i

is a query term in q,
– P (e) is the prior probability of relevance for element e,
– P (t

i
|e) is the probability of generating the query term t

i
from element e,

– P (t
i
|C) is the probability of query term t

i
in the collection, and

– λ
e

(element-dependent weight on the element language model) is a weighting
parameter between 0 and 1 which is used in smoothing the element model
with the collection model.

In Equation 2, P (t
i
|e) and P (t

i
|C) are defined as follows:

P (t
i
|e) =

tf(t
i
, e)∑

t

tf(t, e)
(3)

P (t
i
|C) =

ef(t
i
)∑

t

ef(t)
(4)

where tf(t, e) is the number of occurrences of term t in element e, and ef(t) is
the total number of XML elements in which term t occurs.

We define the element-dependent smoothing parameter, λ
e
, to be inversely

proportional to the number of topic shifts in element e:

λ
e

=
λ

topic shifts(e)
(5)

where:
λ is a constant parameter between 0 and one (we consider λ = 0.1 for all the
experiments).

We experiment with two different prior probabilities of relevance P (e). First,
we define the prior probability to be proportional to the length of an element
which we refer to it as length prior:

P (e) =
length(e)∑
C

length(e)
(6)

23

, and second to be proportional to the number of topic shifts in an element which
we refer to it as topic shift prior:

P (e) =
topic shifts(e)∑
C

topic shifts(e)
(7)

4 Retrieval Setting

For calculating the number of topic shifts in each XML elements, our first step
is to decompose the Wikipedia XML documents into semantic segments through
the application of TextTiling. We consider the discourse units in TextTiling to
correspond to paragraph XML elements. We considered paragraph elements to
be the lowest possible level of granularity of a retrieval unit. For the remainder of
the paper, when we refer to the XML elements considered in our investigation, we
will mean the subset consisting of paragraph elements and of elements containing
at least one paragraph element as a descendant element.

Accordingly, the generated semantic segments can only correspond to para-
graph elements and to their ancestors. As TextTiling requires a text-only version
of a document, each XML document has all its tags removed and is decomposed
by applying the algorithm to sequences of paragraphs. We set the TextTiling
parameters to W = 10 and K = 6. A a heuristic W ∗ K is equal to the average
paragraph length (in terms of the number of terms).

After the application of TextTiling in the above data sets, we compute the
number of topic shifts in elements.

In this work, only the title field of the CO queries is used. No stemming is
applied. Elements with size smaller than 20 has been removed when indexing the
Wikipedia collection. When we refer to the size or the length of an element, we
mean the number of terms after removing stopwords. For each of the retrieval
approaches, the top 1,500 ranked elements are returned as answers for each of
the CO topics.

5 Experiments

Within the ad-hoc XML retrieval task we consider the following retrieval ap-
proaches:

5.1 Thorough Task

In our thorough task we experiment with two different ways of smoothing,
element-dependent smoothing and fixed approach (λ = 0.1 for all elements).
We also consider both length and the number of topic-shifts as prior probability
of relevance. We submitted three runs:

– A run using the above language modelling approach with topic shift prior.
We set λ

e
= 0.1 (Lm ToicShiftsPrior T).

24

– A retrieval approach based on the above language modelling approach with
a length prior. We set λ

e
=0.1 (Lm LengthPrior T).

– A retrieval approach based on the above language modelling approach with
topic shift prior, where we use an element-dependent smoothing approach
as discussed in Equation 5 (Lm ToicShiftsPrior TermWeighted T).

Table 1. Thorough retrieval task: Evaluation based on Mean Average effort preci-
sion(MAep)

Approach MAep

Lm ToicShiftsPrior T 0.0185
Lm LengthPrior T 0.0181
Lm ToicShiftsPrior TermWeighted T 0.0163

The evaluation results with respect to the system-oriented evaluation,
i.e. in terms of mean average effort-precision (MAep), are shown in Table 1. Fo-
cussing on the two approaches employing non-uniform priors, Lm ToicShiftsPrior T
and Lm LengthPrior T, we observe that they perform comparably when eval-
uated using the system-oriented measures. This shows that the ability of both
approaches in estimating the relevance of XML elements is almost the same.

We also investigate the element-specific smoothing approach in thorough
task. Table 1 shows that using the element-dependent smoothing approach,
Lm ToicShiftsPrior TermWeighted T, slightly decreases the overall effectiveness
compared to the fixed smoothing, Lm ToicShiftsPrior T.

5.2 Focused Task

The INEX 2006 Focused task asks systems to find the most focused elements that
satisfy a (focused) information need, without returning “overlapping” elements.

In our focused task we aim at investigating the differences between the user-
oriented Focused task and the system-oriented Thorough task. For this purpose,
we submit similar approaches to our thorough runs. Overlap was removed by
applying a post-filtering on the retrieved ranked list by selecting the highest
scored element from each of the paths. In case of two overlapping elements with
the same relevance score, the child element is selected. We submitted three runs:

– We removed overlapping elements from the Lm ToicShiftsPrior TermWeighted T
run (Lm ToicShiftsPrior TermWeighted F).

– We removed overlap from the Lm ToicShiftsPrior T (Lm ToicShiftsPrior F).
– Since we expect that runs using element-based smoothing perform better

for the Focused task, we submit a version of Lm LengthPrior T which use
element-based smoothing (Lm LengthPrior TermWeighted F).

The evaluation results with respect to the user-oriented evaluation, i.e.
in terms of nxCG at three different early cut-off points (5, 10, 25, 50), are shown

25

Table 2. Focused retrieval task: normalised eXtended Cumulated Gain (nxCG) at
different cut-off points

Approach nxCG@5 nxCG@10 nxCG@25 nxCG@50

Overlap On

Lm ToicShiftsPrior TermWeighted F 0.3455 0.2965 0.2351 0.1774

Lm ToicShiftsPrior F 0.3429 0.2953 0.2223 0.1649

Lm LengthPrior TermWeighted F 0.3525 0.2957 0.2276 0.1708

in Table 2. Focussing on the two approaches employing element-based smoothing,
Lm ToicShiftsPrior TermWeighted F and Lm LengthPrior TermWeighted F, we
observe that both perform better than the approach using fixed smoothing,
Lm ToicShiftsPrior F, when evaluated using the user-oriented measures. This
shows that although using element-based smoothing hurts thorough task but
improves focused task. This indicates that two tasks address different problems
and needs different techniques.

Furthermore, using length prior at the very early rank (nxCG@5) improves
the performance while using topic shifts prior seems more useful for the remain-
ing cutoff points.

5.3 All In Context

For the ALL In Context task, we took our focused runs, reordered the first 1500
elements in the list such that results from the same article are clustered together.
We submitted three runs:

– Lm LengthPrior TermWeighted F Clustered R
– Lm TopicShiftsPrior F Clustered R
– Lm TopicShiftsPrior TermWeighted F Clustered R

At the time of writing, none of the All In Context runs have been evaluated with
an official INEX metrics.

5.4 Best In Context

For the Best In Context task, we examine whether the most focused element in
a relevant document is a good choice as the best entry point in a relevant article.
For this task we submitted three runs:

– We took our focused run, Lm TopicShiftsPrior TermWeighted F, and return
the elements with the maximum relevance score for each article as the best
entry point
(Lm TopicShiftsPrior TermWeighted F B).

– We took Lm TopicShiftsPrior F and return the elements with the maximum
relevance score as the best entry point
(Lm TopicShiftsPrior F B)

26

– This run is slightly different from Lm TopicShiftsPrior TermWeighted F B
such that in overlap-removal phase, in case of two overlapping elements with
the same relevance score, the parent element is selected
(Lm TopicShiftsPrior TermWeighted Fparent B).

We report the results using the EPRUM-BEP-Exh-BEPDistance and BEPD
metrics at A=0.01 as shown in table 3. When evaluating these runs with EPRUM-
BEP-Exh-BEPDistance at A=0.01, our runs ranked 2nd, 3rd and sixth. This
shows that based on our approaches and using EPRUM-BEP-Exh-BEPDistance
evaluation measure, the most focused elements are good estimates for the best
entry points in relevant articles.

Table 3. Best In Context task: EPRUM-BEP-Exh-BEPDistance and BEPD metrics
at A=0.01

Approach @A=0.01

EPRUM-BEP-Exh-BEPDistance

Lm TopicShiftsPrior TermWeighted F B 0.0325

Lm TopicShiftsPrior F B 0.0314

Lm TopicShiftsPrior TermWeighted Fparent B 0.0300

BEPD

Lm TopicShiftsPrior TermWeighted F B 0.1259

Lm TopicShiftsPrior TermWeighted Fparent B 0.1201

Lm TopicShiftsPrior F B 0.1129

6 Discussion and summary

We described our approaches for the various adhoc tasks. Our main findings are
that using element-specific smoothing within the language modeling framework
depending on the number of topic shifts improves focused access to Wikipedia
collection. We also found that the elements recognized as the most focused el-
ements in our approaches are good estimates as the best entry points in the
enclosing relevant articles. We further investigate using more sophisticated algo-
rithms in incorporating the number of topic-shifts in the smoothing process in
the fucture work.

References

1. M. A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of

the 32nd annual meeting on Association for Computational Linguistics, pages 9–16,
Morristown, NJ, USA, 1994. Association for Computational Linguistics.

2. D. Hiemstra. Using Language Models for Information Retrieval. Phd thesis, Uni-
versity of Twente, 2001.

3. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. The importance of length normal-
ization for XML retrieval. Information Retrieval, 8(4):631–654, 2005.

27

4. G. Ramirez, T. Westerveld, and A. P. de Vries. Using structural relationships for
focused XML retrieval. In Proceedings of the Seventh International Conference on

Flexible Query Answering Systems (FQAS 2006). Springer, 2006.

28

Structured Content-Only Information Retrieval
Using Term Proximity and Propagation of Title

Terms

Michel Beigbeder

École Nationale Supérieure des Mines de Saint-Étienne
michel.beigbeder@emse.fr

1 Introduction

The needs for information retrieval are now quite well established and the tools
have a large acceptance from the users. Though quite every documents are cre-
ated with some structure in mind, the methods and tools are mainly dedicated
to flat documents as opposed to structured documents.

Moreover most of the methods used for information retrieval on flat texts
don’t even take into account the basic structure of text: its linearity. In fact they
are based on frequencies of terms (both in the documents and in the collection)
and on the document lengths. Though there were some attempts to use the
position of word occurences in the text with either explicit proximity operators
in the query language or ranking based on proximity of the query terms. These
attempts are reviewed in section 2.

Concerning the logical structure which is the structure commonly refered
to when speaking about structured documents, it is only quite recently that a
sufficiently widespread representation for it is available so that large corpora of
structured documents are available. So it is now possible to experiment in the
large some of the ideas developped for structured information retrieval in the
past and to design new methods.

We present in this paper an extension to structured documents retrieval of a
proximity based method originally dedicated to flat texts. Our model can easily
compute a score for any segment of text, in particular for any section or the whole
document. First in section 3, we present the document model this method deals
with, and in section 4 the method itself. In section 5 we present the experiments
made within the INEX 2006 campaign.

2 Proximity use in flat document retrieval

The idea of using the proximity of the query keywords for retrieving flat docu-
ments was first implemented in boolean systems with a NEAR operator. This
operator itself was an extension of the ADJ operator. These two operators can
be used between keywords in a boolean query and its truth value is related to
the positions of the two connected keywords. The NEAR operator evaluates to

29

true if the two terms appear within k words of each other (k is one for the ADJ
operator).

The motivation for the ADJ (resp. NEAR) operator is to be able to describe
in the query the needs for phrases (resp. loose phrases). These operators still are
in use in tools used for searching in library catalogs. Though, from a technical
point of view, they suffer from two handicaps that slowed down their use in plain
text search engines. The first one is that they are closely linked to the boolean
retrieval model which does not allow to rank the retrieved documents. The second
one is that they do not fit well in the boolean query language model itself because
they can only connect keywords and cannot be consistently extended to connect
boolean sub-expressions.

More recent ideas for using keyword proximity were developped and they
don’t have these two limitations. Concerning the second one, the queries ac-
cepted by the query language model are either bags of terms or classic boolean
expressions (only AND and OR operators). About the first one all the methods
score the documents with respect to the positions of the keywords occurences,
taking into account their proximity. We will now describe the basis of some of
these methods

2.1 Interval based methods

For their participation to the TREC-4 campaign, both Clarke and al. and Hawk-
ing and al. developped similar methods to rank text documents according to the
proximity of the query keywords. The ideas are to select some intervals of text
that contain all the keywords; to attribute a score to these intervals (the shorter
the interval, the greater the score) and to sum up all these scores to score the
document.

The two methods differ in the selected intervals: for Clarke and al. intervals
cannot be nested because only the shortest ones are selected. For Hawking and
al., for each occurence of any of the keywords, the shortest interval that contains
all the keywords is selected. So if there are two successive occurences of the same
keyword without any occurences of any other keyword in between, two nested
intervals are selected.

The two methods also differ in the interval scoring, Clarke and al. chose a
score that is roughly inversely proportional to the interval length and Hawking
and al. chose a score roughly inversely proportional to the square root of the
interval length.

The idea of using intervals was then revisited by Rasolofo and al.. They
chose to base their method on Okapi and they add an additional score to the
Okapi probability. This additional score is based on the intervals containing any
query terms pair: Each of the intervals shorter than a specified constant (6 in
their experiments) that contains occurences of two query terms contribute to
this additional score.

30

2.2 Fuzzy influence function model

Beigbeder et al. developped a retrieval model based on the fuzzy proximity of the
keywords. More precisely each occurence of a keyword has a fuzzy influence on
its neighbouring. This influence reaches its maximum value one at the keyword
occurence position and decreases with the distance to this position. The most
simple function that have this behaviour is a triangle function. Moreover there
is an easy to control parameter in such a function: its width, the length of the
triangle basis. We will call k half of this length, it controls the range of the
influence of an occurence.

Given a term the influences of its occurences are combined with a maximum
operator. If the influence function is symmetrical, it consists in considering that
at a given position the influence is determined by the nearest occurence of the
term.

Their query language model is that of the classical boolean model with AND,
OR and NOT operators (neither NEAR nor ADJ). The influences of the query
terms are combined in the query tree according to the fuzzy logic interpretation
of the union and intersection operators

Let us consider an example with the document X X X X A X X X B X X X
X X where there is an occurence of the term A (resp. B) at position 5 (resp. 9)
and where X denotes any term different from the terms A and B. Figure 1 shows
the proximities to the terms A and B in this sample document (with k = 5) and
their combination with a minimum corresponding to the AND operator.

Finally the score of a document is the summation of the influence function
over all the positions in the text. It consists in evaluating the area under the
curve associated to the root of the query tree. With our example, this is the area
under the triangle of the curve A AND B.

This is this model that we extended to some kind of structured documents.

3 Our model of structured documents

Our work is pragmatic with respect to the structure of documents. We want
to take into account the basic structure of many kinds of document models:
nested sectionning and titles. This is the basis for scientific articles and technical
documents but also for many more informal documents. We ignore any other
structure, such lists and emphasis for instance. As a particular case, we consider
that a document is the highest level in the sectionning hierarchy.

Another point is that sectionning and titles are tightly related so that in
the LATEX styles, only sectionning commands (\section, \subsection, . . .) are
available and the titles are given as parameters to these commands.

So the basis for our document model is the family of document which could
be coded in the LATEX styles with the sectionning commands only. Here is an
example:

\title{title 1} % highest level, level 0

% the document level and its title

31

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

A

♦ ♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦ ♦ ♦ ♦ ♦

♦
B

+ + + +

+

+

+

+

+

+

+

+

+

+

+
A AND B

� � � �

�

�

�

�

�

� � � � �

�

Fig. 1. Proximities to the terms A and B and their combination for the query A AND
B: x-axis: position in the text, y-axis: fuzzy proximities.

bla bla % level 0 text

\section{title 2} % level 1 and its title

bla bla % level 1 text

\subsection{title 3} % level 2 and its title

bla bla % level 2 text

\section{title 4} % level 1 and its title

bla bla % level 1 text

This example can be coded in XML with:

<section><title>title 1</title>

bla bla

<section><title>title 2</title>

bla bla

<section><title>title 3</title>

bla bla

</section>

</section>

<section><title>title 4</title>

bla bla

</section>

</section>

Formally the grammar of our document model is:

document = section

32

section = ’<section>’’<title>’ title text ’</title>’
section content

’</section>’
section content = (section text | section)*

4 Influence of keywords occurences

In the model presented in section 2.2, the influence of a term was only modelized
for linear text. With our model of structured document, we have to modelize the
influence of an occurence of a query term depending on the structural part in
which this occurence does appear. As our document model is very simple there
are only two cases: Occurences can appear in section text parts or title text

parts.
For a term occurence which appears in the section text parts, the basis is

the same as in linear text: A decreasing value of the distance to the occurence.
But we add another constraint, the influence is limited to the section text

part in which the occurence does appear.
Let us consider a document with the same text than the sample document

of section 2.2 but with some structural tags: <section> <title> X X X X A
</title> X X X B X X X X X </section>. The occurence of the term B is
in the section text part of the section. Figure 2 shows the limitation of the
triangle proximity to the term B in the document to the surrounding section.

For term occurences which appear in the title text parts their influence
is extended to the full content of the section and recursively the subsections
contained in the corresponding section content part.

Considering our sample structured document the occurence of the term A is
in the title text part of the section. Figure 2 shows the propagation of the
influence of the occurence of the term A that appears in the title to the whole
section.

Otherwise like in the model presented in section 2.2, we use a boolean lan-
guage query model and we combine the influence functions with min and max
operators on the internal nodes of the boolean query tree. The basic score of a
section is the summation of the influence function at the root of the query tree.
We normalize this score by the maximum score reachable for this section. As the
maximum value of the influence function is one. The maximum score simply is
its length. Note that this maximum can actually be reached, for instance if all
the query terms appear in the title of a section.

5 Experiments and implementation

5.1 Converting the documents to our document model

The documents of the Wikipedia collection used for the 2006 INEX campaign
are written in XML. But the structure of the documents is more complex than
that of our document model of section 3, as 1056 different tags are used.

33

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

A
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
B

+ + + + + +

+

+

+

+

+

+

+

+

+

+
A AND B

� � � � � �

�

�

�

�

�

�

�

�

�

�

Fig. 2. Limitation of the influence of an occurence to the section text part in which
it appears (proximity to the term B); propagation of a title term (proximity to the
term A): x-axis: position in the text, y-axis: fuzzy proximities.

The main part of the conversion consists in keeping the text and the section
and title tags with their corresponding closing tags. This can easily be done
with an xslt processor, but some non obvious choices have to be made about
the textual content, particularly concerning the spaces. Unfortunately, at the
syntactic level no right choice can be made because of an inconsistent use of
some tags. For instance, the document number 1341796 contains the following
highligth (the attributes of the collectionlink tags are removed):

This is a

<emph3>List of

<collectionlink ...>poison</collectionlink>ings</emph3>in

alphabetical order of victim. It also includes confirmed attempted

and fictional poisonings. Many of the people listed here committed

or attempted to commit

<collectionlink ...>suicide</collectionlink>by

poison;

others were poisoned by others.

The question is to insert or not a space after the closing of the collectionlink
tag. If a space is inserted, the following text is generated (mistake is emphasized):

This is a List of poison ings in alphabetical order of victim. It also

includes confirmed attempted and fictional poisonings. Many of the people

34

listed here committed or attempted to commit suicide by poison; others

were poisoned by others.

which is correct for the second instance of the tag, but not for the first one. If
no space are inserted, the following text is generated:

This is a List of poisonings in alphabetical order of victim. It also

includes confirmed attempted and fictional poisonings. Many of the people

listed here committed or attempted to commit suicideby poison; others

were poisoned by others.

with the reverse correctness. Notice that a choice about spaces are to be made
for each tag, and in the above examples, the emph3 tags were replaced by spaces.

As no consistant choice could be made, we chose to insert space for each tag.

5.2 Indexation tool and index structure

We used as a basis for the indexation the tool Lucy in version 0.5.4. Though
it is an outdated version that is now replaced by different versions of zettair,
we had some experience with it as we extended it with an implementation of
the model presented in section 2.2. It is a good basis because it keeps within its
index the position of every occurence of every term, and its lexical analyzer can
recognize the syntax for any XML tags. At the indexation phase, we added the
code necessary to keep track of the position and the nesting of the section and
title tags. Remember that all other tags were removed in the previous step
when the documents were converted to our model.

5.3 Building the queries

Queries could be automatically built with the conjunction of the terms that
appear in the title field of the topics. As our method is highly selective, there
would be very few results if any in the retrieved list of documents with such
queries. So either the basic conjunctive queries or the retrieval procedure have
to be relaxed in some way. Keeping these automatic conjunctive queries it is
possible to enlarge the result set by using a lemmatization both in the indexation
phase and in the query analysis. We didn’t try this solution but we chose to build
the queries manually.

With a basis of a conjunction of the terms found in the title field, sometimes,
some terms were removed, but more often, these terms were expanded with
disjunction of variations of the terms. These variations could simply be flexionnal
ones (plural vs. singular) or derivationnal ones (verb, noun, adjective) or even
semantic ones (synonyms or related concepts).

For instance, the title field of the topic number 289 is

emperor "Napoleon I" Polish

With a simple conjonction, the query could be (the ’&’ symbol is used for the
boolean AND operator):

35

emperor & Napoleon & I & Polish

But some relaxation of it can be derived, for instance:

emperor & Napoleon & Polish

Napoleon & Polish

Napoleon & (Polish | Poland)

By using the description, narrative and ontopic keywords fields, other queries
can be formulated, for instance:

Napoleon & (Polish | Poland | Laczynska | Malewski | Poniatowski)

5.4 Runs

Given the queries and the value of the parameter k, our method is able to
compute the fuzzy proximities to the query terms for each leaf of the query tree
and to combine these influences up to the root of the tree. We used two query
sets and two values of k: 50 and 200.

Then a score can be computed for any span in the document. We computed
scores for the whole documents and all its sections and subsections recursively.
This was our participation to the Thorough task.

For the Best In Context task we searched for the maximum of the influence
function at the root of the query tree and returned the section of highest level
which contained the position at which this maximum was reached.

Finaly for the Focused task, the different parts of the documents were sorted
with two keys: first, the score of the document to which it belongs; and then its
own score.

36

Influence Diagrams and Structured Retrieval:
Garnata implementing the SID and CID models

at INEX’06

Luis M. de Campos, Juan M. Fernández-Luna,
Juan F. Huete, and Alfonso E. Romero

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática y de Telecomunicación, Universidad de Granada,

18071 – Granada, Spain
{lci,jmfluna,jhg,aeromero}@decsai.ugr.es

Abstract. This paper presents the results of the our participation in
INEX’06. Two runs were submitted to the Ad Hoc Thorough track ob-
tained with Garnata, and Information Retrieval Model for structured
documents, and implementing two different models based on Influence
Diagrams, the SID and CID models. The result of this first participation
has been very poor. In the paper, we describe the models, the system,
and analyse the possible reason of such a bad performance.

1 Introduction

Although the research group “Uncertainty Treatment in Artificial Intelligence”
at University of Granada has been participating in INEX since its beginnings,
this year it is the first time that their members submit a run to the official
tasks. Until now, our contribution to INEX has been the design of several topics
and the assessments of relevance judgements, but in this new edition we have
participated with a new experimental plattform to perform structured retrieval
using Probabilistic Graphical Models.

We have participated in the Adhoc Track (Thorough) with the retrieval re-
sults of two models based on Influence Diagrams [5]: the Simple Influence Di-
agram Model (SID Model) and the Context-based Influence Diagram Model
(CID Model) [2, 3]. These models have been implemented in the Garnata Re-
trieval System [4], a software specifically designed and implemented to work with
Probabilistic Graphical Model-based structured retrieval models, like Bayesian
Networks and Influence Diagrams [7].

It is also fair to comment that the results of this first participation are not
good. They are clearly disappointing. In fact, we are in the last positions of
the ranking in the Thorough track. The main reason of this behaviour could be
due to a software bug that we have found in Garnata after studying the bad
performance obtained by the SID and CID models once the official results were
published. In the moment of writing this paper, we are re-evaluating both models
in order to know the correct values of the official INEX evaluation measures. The

37

new results will be detailed in the INEX workshop presentation and published
in the final proceedings.

Another reason to get such a so bad position in the ranking could be that the
parameters that we used in the experimentation were not the best, because they
were selected in a hurry as the deadline to submit the results was approaching
and we had not completely finished the development of the software. We think
that the performance of both models could be clearly improved with a more
systematic experimentation.

In order to describe the models and the software that we have used in this
edition, this paper is organised as follows: The next section will introduce the
reader the formalism of the Influence Diagrams. Sections 3 and 4 will describe
the SID and CID models, and Garnata, the Information Retrieval System, which
implements them, respectively. The following section will discuss how the experi-
mentation was performed, and try to explain the reasons of the bad performance
of the models. Finally, this paper will finish with the conclusions and future
works.

2 Introduction to Influence Diagrams

An Influence Diagram [5, 9] provides a simple notation for creating decision mod-
els by clarifying the qualitative issues of the factors which need to be considered
and how they are related, i.e. an intuitive representation of the model. It also
has associated an underlying quantitative representation in order to measure the
strength of the relationships: we can quantify uncertain interactions between ran-
dom variables and also the decision maker’s options and preferences. The model
is used to determine the optimal decision policy. More formally, an influence
diagram is an acyclic directed graph containing three types of nodes (decision,
chance, and value nodes) and two types of arcs (influence and informative arcs).

Nodes in an influence diagram represent various types of variables.

– Decision nodes: usually drawn as rectangles, these represent variables that
the decision maker controls directly. These variables model the decision al-
ternatives available for the decision maker.

– Chance nodes: usually drawn as circles, these represent random variables,
i.e. uncertain quantities that are relevant to the decision problem and cannot
be controlled directly. They are quantified by means of conditional probabil-
ity distributions, identical to those used in Bayesian networks1. Predecessors
(parents) of chance nodes that are decision nodes act in exactly the same
way as those predecessors that are chance nodes – they index the conditional
probability tables of the child node.

– Utility nodes: usually drawn as diamonds, these represent utility, i.e. they
express the profit or the preference degree of the consequences derived from

1 In fact, the subset of an influence diagram that consists only of chance nodes is
a Bayesian network, i.e., an influence diagram can also be viewed as a Bayesian
network enlarged with decision and utility nodes.

38

the decision process. They are quantified by the utility of each of the possible
combinations of outcomes of their parent nodes.

Take Umbrella
P(weather = rain) = 0.2

forecast
(F)

weather

(W)(U)

P(F=sunny|W=rain) =0.1
P(F=cloudy|W=rain)=0.4
P(F=rainy|W=rain)=0.5
P(F=sunny|W=no−rain) =0.7
P(F=cloudy|W=no−rain)=0.2
P(F=rainy|W=no−rain)=0.1

P(weather = no−rain) = 0.8

Utility(W=no−rain, U=T) =10
Utility(W=no−rain, U=F) = 20
Utility(W=rain, U=T) = 70
Utility(W=rain, U=F) = 0

Utility

Fig. 1. An example of an Influence Diagram.

There are also different types of arcs in an influence diagram, which gener-
ally represent influence. The arcs between chance nodes represent probabilistic
dependencies (as occurs in Bayesian networks). The arcs from a decision node
to a chance node or to a utility node establish that the future decision will affect
the value of the chance node or the profit obtained, respectively. Arcs between
a chance node and a decision node (also called informative) only say that the
value of the chance node will be known at the moment of making the decision.
Finally, arcs from a chance node to a utility node will represent the fact that the
profit depends on the value that this chance node takes. The absence of an arc
between two nodes specifies (conditional) independence relationships. It should
be noted that the absence of an arc is a stronger statement than the presence of
an arc, which only indicates the possibility of dependence.

Some arcs in influence diagrams clearly have a causal meaning. In partic-
ular, a directed path from a decision node to a chance node means that the
decision will influence that chance node, in the sense of changing its probability
distribution.

A simple example of an influence diagram appears in Figure 1. It has two
chance nodes, F and W, representing, the weather forecast in the morning (sunny,
cloudy or rainy), and whether it actually rains during the day (rain or no-rain),
respectively. It has one decision node U, take an umbrella (with possible values
true or false). The utility node measures the decision maker’s satisfaction.

With each chance node X in the graph, the quantitative part of an influence
diagram associates a set of conditional probability distributions p(X|pa(X)),
one for each configuration pa(X) from the parent set of X in the graph, Pa(X),
i.e. for each allocation of values to all the variables in the parent set of X.

39

If X has no parents (Pa(X) = ∅), then p(X|pa(X)) equals p(X). For each
utility node V , a set of utility values v(pa(V)) is associated, specifying for each
combination of values for the parents of V , a number expressing the desirability
of this combination for the decision maker.

The goal of influence diagram modeling is to choose the decision alternative
that will lead to the highest expected gain (utility), i.e. to find the optimal
policy [8]. In order to compute the solution, for each sequence of decisions, the
utilities of its uncertain consequences are weighted with the probabilities that
these consequences will occur.

3 The SID and CID models

In this section, we shall briefly describe the SID and CID models for structured
retrieval. A complete description of these models can be found in [2, 3].

We start with a document collection containing M documents,D = {D1, . . . , DM},
and the set of the terms used to index these documents (the glossary of the collec-
tion). We assume that each document Di is organized hierarchically, representing
structural associations of elements in Di, which will be called structural units.
Each structural unit is composed of other smaller structural units, except some
‘terminal’ or ‘minimal’ units which are indivisible, they do not contain any other
unit. Instead, these are composed of terms: each term used to index the complete
document Di will be assigned to all the terminal units containing it. Conversely,
each structural unit, except the one corresponding to the complete document, is
included in only one structural unit.

These models are Influence Diagrams, so they are based on an underlying
Bayesian networks which represent a structured document set. The Bayesian
network will contain two kinds of nodes, representing the terms and the struc-
tural units. The former will be represented by the set T = {T1, T2, . . . , Tl}.
There are two types of structural units: basic structural units, those which only
contain terms, and complex structural units, that are composed of other basic
or complex units. The notation for these nodes is Ub = {B1, B2, . . . , Bm} and
Uc = {S1, S2, . . . , Sn}, respectively. Therefore, the set of all structural units is
U = Ub ∪Uc. In this paper, T or Tk will represent a term; B or Bi a basic struc-
tural unit, and S or Sj a complex structural unit. Generic structural units (either
basic or complex) will be denoted as Ui or U . Each node T , B or S has associ-
ated a binary random variable, which can take its values from the sets {t−, t+},
{b−, b+} or {s−, s+} (the term/unit is not relevant or is relevant), respectively.
A unit is relevant for a given query if it satisfies the user’s information need
expressed by this query. A term is relevant in the sense that the user believes
that it will appear in relevant units/documents.

Regarding the arcs of the model, there is an arc from a given node (either
term or structural unit) to the particular structural unit node it belongs to,
expressing the fact that the relevance of a given structural unit to the user will
depend on the relevance values of the different elements (units or terms) that

40

comprise it. It should be noted that with this criteria, terms nodes have no
parents.

It should be noticed that the hierarchical structure of the model determines
that each structural unit U ∈ U has only one structural unit as its child, the
unique structural unit containing U (except for the leaf nodes, i.e. the complete
documents, which have no child). We shall denote indistinctly by Hi(U) or Uhi(U)

the single child node associated with node U (with Hi(U) = null if U is a leaf
node).

The numerical values for the conditional probabilities have also to be as-
sessed: p(t+), p(b+|pa(B)), p(s+|pa(S)), for every node in T , Ub and Uc, respec-
tively, and every configuration of the corresponding parent sets (pa(X) denotes
a configuration or instantiation of the parent set of X, Pa(X)). A canonical
model proposed in [1] will be used to represent the conditional probabilities
which supports a very efficient inference procedure. These probabilities are de-
fined as follows:

∀B ∈ Ub, p(b+|pa(B)) =
∑

T∈R(pa(B))

w(T,B) , (1)

∀S ∈ Uc, p(s+|pa(S)) =
∑

U∈R(pa(S))

w(U, S) , (2)

where w(T,B) is a weight associated to each term T belonging to the basic unit
B, w(U, S) is a weight measuring the importance of the unit U within S. In
any case R(pa(U)) is the subset of parents of U (terms for B, and either basic
or complex units for S) relevant in the configuration pa(U), i.e., R(pa(B)) =
{T ∈ Pa(B) | t+ ∈ pa(B)} and R(pa(S)) = {U ∈ Pa(S) |u+ ∈ pa(S)}. These
weights can be defined in any way, the only restrictions are that w(T,B) ≥ 0,
w(U, S) ≥ 0,

∑
T∈Pa(B) w(T,B) ≤ 1, and

∑
U∈Pa(S) w(U, S) ≤ 1.

Once the Bayesian network has been constructed, it is enlarged by including
decision and utility nodes, thus transforming it into an influence diagram.

– Decision nodes: these nodes model the decision variables, representing the
possible alternatives available to the decision maker. One decision node, Ri,
for each structural unit Ui ∈ U . Ri represents the decision variable related to
whether or not to return the structural unit Ui to the user. The two different
values for Ri are r+

i and r−i , meaning ‘retrieve Ui’ and ‘do not retrieve Ui’,
respectively.

– Utility nodes: we shall also consider one utility node, Vi, for each structural
unit Ui. Vi will measure the value of utility of the corresponding decision.

We shall also consider a utility node that represents the joint utility of the
whole model. This node will be denoted by Σ, representing the fact that we are
assuming an additive behavior of the model.

In addition to the arcs between chance nodes (already present in the Bayesian
network), a set of arcs pointing to utility nodes are also included, employed to
indicate which variables have a direct influence on the desirability of a given

41

decision, i.e. the profit obtained will depend on the value of these variables.
We shall consider two different set of arcs, which will consistently generate two
different influence diagrams models:

1. Simple Influence Diagram (SID): we shall only take into account arcs from
chance nodes Ui and decision nodes Ri to the utility nodes Vi. These arcs
mean that the utility function of Vi obviously depends on the decision made
and the relevance value of the structural unit considered.
Finally, the utility node Σ has all the utility nodes Vi as its parents. These
arcs represent the fact that the joint utility of the model will depend on the
values of the individual utilities of each structural unit.

2. Context-based Influence Diagram (CID): In order to represent that the utility
function of Vi obviously depends on the decision made and the relevance
value of the structural unit considered, we use arcs from each chance node
Ui and decision node Ri to the utility node Vi. Another important set of
arcs are those going from Hi(Ui) to Vi, which represent that the utility of
the decision about retrieving the unit Ui also depends on the relevance of
the unit which contains it (obviously, for the units which are not contained
in any other unit these arcs do not exist).
The utility node Σ will have the same set of parents as in the SID model.

Figure 2 shows an example of both influence diagram models: the SID (left-
hand side) and the CID (right-hand side).

V13

R13

R12

V12

V13

R13

R12

V12

R23 R33

V23 V33

R23 R33

V23 V33

R43

V43

R22

V22

U11

U22

U13
U43U23

U12

U33 R43

V43

R22

V22

U11

U22

U13
U43U23

U12

U33
R13

V11

R11R11

V11

T1T1T1T1T1T1T1T1 T3 T4 T5 T6 T7 T8T2 T9 T10 T11 T3 T4 T5 T6 T7 T8T2 T9 T10 T11

Fig. 2. SID and CID models.

Finally, for each node Vi, the associated utility functions must be defined.

1. Utility nodes in SID: for each node Vi, we need to assess a numeric value that
represents the utility for the corresponding combination of the decision node
Ri and the chance node representing the structural component Ui: v(r+

i , u+
i),

v(r−i , u+
i), v(r+

i , u−i) and v(r−i , u−i).
2. Utility nodes in CID: for each utility node Vi we need eight numbers, one for

each combination of values of the decision node Ri and the chance nodes Ui

and Hi(Ui) (except for the leaf nodes, which only require four values). These

42

values are represented by v(ri, ui, uhi(Ui)), with ri ∈ {r−i , r+
i }, ui ∈ {u−i , u+

i },
and uhi(Ui) ∈ {u−hi(Ui)

, u+
hi(Ui)

}.

3.1 Inference and Decision Making

To solve an influence diagram, the expected utility of each possible decision (for
those situations of interest) has to be computed, thus making decisions which
maximize the expected utility. In our case, the situation of interest corresponds
with the information provided by the user when he/she formulates a query. Let
Q ⊆ T be the set of terms used to express the query. Each term Ti ∈ Q will
be instantiated to either t+i or t−i ; let q be the corresponding configuration of
the variables in Q. We wish to compute the expected utility of each decision
given q. As we have assumed a global additive utility model, and the different
decision variables Ri are not directly linked to each other, we can process each
one independently. The expected utilities for each Ui can be computed for each
model by means of:

– SID Model:

EU(r+
i | q) =

∑
ui∈{u−i ,u+

i
}

v(r+
i , ui,) p(ui|q) . (3)

EU(r−i | q) =
∑

ui∈{u−i ,u+
i
}

v(r−i , ui) p(ui|q) . (4)

– CID Model:

EU(r+
i | q) =

∑
ui∈{u

−
i

,u
+
i
}

uhi(Ui)
∈{u

−
hi(Ui)

,u
+
hi(Ui)

}

v(r+
i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) . (5)

EU(r−i | q) =
∑

ui∈{u
−
i

,u
+
i
}

uhi(Ui)
∈{u

−
hi(Ui)

,u
+
hi(Ui)

}

v(r−i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) . (6)

In the context of a typical decision making problem, once the expected util-
ities are computed, the decision with greatest utility is chosen: this would mean
to retrieve the structural unit Ui if EU(r+

i |q) ≥ EU(r−i |q), and not to retrieve
it otherwise. However, our purpose is not only to make decisions about what to
retrieve but also to give a ranking of those units. The simplest way to do it is to
show them in decreasing order of the utility of retrieving Ui, EU(r+

i |q).
A detailed description of how to compute the posterior probabilities required

in these previous equations can be found in [2, 3], but only to mention that
the specific characteristics of the canonical model used to define the conditional
probabilities will allow us to efficiently compute the posterior probabilities in
the following way:

43

∀B ∈ Ub, p(b+|q) =
∑

T∈Pa(B)\Q

w(T,B) p(t+) +
∑

T∈Pa(B)∩R(q)

w(T,B) . (7)

∀S ∈ Uc, p(s+|q) =
∑

U∈Pa(S)

w(U, S) p(u+|q) . (8)

4 Garnata: an Information Retrieval System for
Structured Documents

Garnata was born as an implementation completely adapted to the models based
on the above Probabilistic Graphical Models to retrieve structured documents,
although other models following the same philosophy could be easily imple-
mented in it. Written in C++, following the object-oriented paradigm, it offers
a wide range of classes and a complete set of utility programs. It implements the
SID and CID models.

It is able to manage different collections, and different indexes over the same
collection. It can choose among different stopword lists (previously inserted into
the system) and use (if desired) Porter’s stemming algorithm.

In our models, several valid weighting schemes could exist because of its
experimental nature. As a consequence, in Garnata, indexing does not compute
the weights (setting all of them to be zero). Instead of that, we have added
the possibility to calculate weights (following a certain weighting scheme) for
previously built indexes without inserting into them, and store them in files –
the so-called weight files– . So, records of that precomputed weight files are kept
in order to provide a fast way to insert one into the index itself to retrieve with
it.

To store textual information (terms and identifiers of the final units where
they appear), we use inverted indexes [6]. While the lexicon is kept entirely in
memory (both while indexing and querying), the list of occurrences is read from
disk. We use another file to write the list of relative positions of each term inside
a unit in order to answer queries containing proximity operators or phrases
(although in the current stage of Garnata, they are not used to formulate a
query).

To maintain information about the structural units, we use one direct access
file, except for the XPath routes, which are stored separately. Other files keep
relations among units, being accessible with only two disk reads. So a large file
contains data of each unit itself (identifier, tag, container, position, . . .) and
besides, we can easily manage the following relationships with two disk accesses
(essential for our models):

– Given a non-final unit, returning the list of identifiers of the units that it
contains.

– Given a final unit, returning the container unit and, recursively, all the con-
tainers until a leaf unit is found.

44

– Given a final unit, returning the list of contained terms (known as the direct
index).

The Garnata’s indexing subsystem also implements file compression.
Querying subsystem is the most critical part of an IR system. In our case, we

have built structures at indexing time to reduce at maximum the amount of disk
accesses while processing a query, in order to save time and give a short response
time. The algorithm for achieving this task comprises the following steps (not
necessarily in this order):

1. Query is parsed, and occurrences of the component terms are retrieved from
disk.

2. For each occurrence, implied final units are read into memory (if not already
there).

3. For each final unit, its descendants are read into memory (if not already
there).

4. Propagation is carried out, units are sorted by its probability of relevance,
and the result is returned.

The first big bottleneck to be minimized is due to the reading from disk
of the unit objects (containing information about each unit). We will keep two
unit caches in memory: the first one, containing final units, and the second one,
containing complex units. Both will be static caches, meaning that they will
not change the unit stored in each cache slot. Cache is accessed doing a hash
function-like scheme, so for each cache slot, we will have several candidates (those
identifiers being the hash inverse of the slot identifier).

For the final units cache, in each slot, we will store the unit containing greater
number of terms (among the candidates). For the complex units cache, in each
slot, we will store the unit containing more final units. These two heuristics has
shown very good time performance in our experiments.

The paper [4] contains a more detailed description of Garnata.

5 Experimental Setting for INEX’06

In this section, we shall describe the conditions under we have performed the
two runs submitted to the Thorough track.

First of all, the weighting scheme used in equations 7 and 8 to compute
posterior probabilities has been basically a normalized tf-idf scheme for weights
of terms in basic units. On the other hand, the weights of units included in unit,
Ui, measure to a certain extent, the proportion of the content of the unit Ui

which can be attributed to each one of its components. A detailed explanation
of how they are computed is shown in [2].

With respect to the prior probabilities of relevance of the terms, p(t+), they
can also be defined in any reasonable way, for example an identical probability
for all the terms, p(t+) = p0, ∀T ∈ T , as proposed in [2], specifically, 0.5.

45

Regarding the utilities for the SID model, for a given unit Ui, the best situ-
ation is clearly for a relevant unit to be retrieved, and the worst situation, for
a relevant unit to be hidden. We therefore fix v(r+

i , u+
i) = 1 and v(r−i , u+

i) = 0.
The other two are also set to 0: v(r+

i , u−i) = 0 and v(r−i , u−i) = 0.
In the context of the CID model, we need to assess eight utility values. Once

again following the ideas set out in the previous paragraph, two of these will be
fixed: v(r+, u+, w−) = 1 and v(r−, u+, w−) = 0. But as the ranking criteria has
been only the expected utility of retrieving, EU(r+

i |q), those utilities related to
not retrieving (v−) are not taken into account2. Therefore, the utility values are
those in Table 5.

v−+− v+
−− v+

−+ v+
++ v−++ v−−+ v−−− v+

+−

– 0.0 0.0 0.0 – – – 1.0

Table 1. Utility configuration for the CID model.

In the first row of this table, the superscript is related to the value that the
node Ri is taking. The subscripts refer to the value that units U and W are
taking respectively at the same time.

The choice in the case of the SID model is very clear: we retrieve a unit when
it is relevant. In the CID model, we retrieve a unit when it is relevant and the
unit where it is contained is not relevant. We could say that these values are
the default vectors of utilities for both models, reason why we selected them to
run our experiments. We have to recognise that these are really strong restric-
tions and could be relaxed obtaining more appropriate values of the different
utilities, but we could not do it due to the lack of time as we were finishing the
development of Garnata when the submission deadline went off.

We also have considered a different information source to define the utility
values: the query itself. We could say that a given structural unit Ui will be more
useful (with respect to a query Q) as more terms indexing Ui also belong to Q.
More formally, let us consider the sum of the inverted document frequencies
of those terms indexing a unit Ui, A(Ui), that also belong to the query Q,
normalized by the sum of the idfs of the terms contained in the query (nidfQ(Ui)):

nidfQ(Ui) =

∑
Tk∈A(Ui)∩Q idfk∑

Tk∈Q idfk
(9)

These values nidfQ(Ui) will be used as a correction factor of the previously
defined utility values, for each utility node Vi:

v∗(ri, ui) = v(ri, ui) · nidfQ(Ui)
v∗(ri, ui, uhi(Ui)) = v(ri, ui,s, uhi(Ui)) · nidfQ(Ui)

(10)

2 This is also applied to the utilities in the SID model

46

With these experimental settings, according to the results published in the
evaluation section of the INEX’06 website3, considering “Metric:ep-gr, Quanti-
zation: gen, Overlap=off”, we have obtained a mean of effort-precision of 0.004
with the runs of obtained by Garnata for the two models, occupying the disap-
pointing 97th and 98th positions.

Studying the reasons of this bad behaviour, we discovered a bug in the soft-
ware, by which instead of retrieving the ith unit, we were returning the i + 1th.
Basically, the software returned a completely different unit to that which should
have been returned. This problem could partially justify the awful results that
we have obtained. At the moment of writing this paper, we are performing the
retrieval and the list of retrieved units is being created. Later the new evaluation
with EvalJ will be performed, so we shall know the true measures. These will be
made public in the workshop and later in the final proceedings.

Then, as well as the bug, possible reasons that could explain this low perfor-
mance would be:

– As mentioned above, a bad selection of the configurations for the utilities
in both models. As an example, the value v+

++ is set to 0.0 when it should
be set to 1.0, meaning that the utility of retrieving a relevant unit inside
a relevant unit is the maximum. The original value would be the correct if
we were participating in the ’Best in Context’ task where we are looking for
best entry points.

– Poor processing of the query, because we consider it as a bag of words, with-
out taking into account interesting features as proximity or exact patterns,
among others.

– The weighting scheme of the units that we have used could not be enough.
So a more sofisticated scheme where we could take into account the type
of unit (for example, titles) could improve the results. Therefore, the unit
weights would not depend only on the portion of the text that they would
contain but also of the importance of the unit itself.

6 Conclusions and Future Works

In this paper, we have presented the SID and CID models, and the Information
Retrieval System, which implements them, Garnata. These are the retrieval tools
that we have used to participate in this our first edition of INEX, in the Thorough
track.

The results are very disappointing as we are at the bottom of the raking.
One of the reasons could be a bug in the software at the moment of adapting
to work with Wikipedia, but other could be a bad selection of the parameters
of the models (above all, the configurations of utilities that we selected are very
strict). We are re-evaluating, once we corrected the mistake, so in brief we shall
have the correct measures.
3 http://inex.is.informatik.uni-duisburg.de/2006/adhoc-

protected/results/thorough/Thorough.html

47

With respect to the future works, we intend to have a detailed experimen-
tation with the IEEE and Wikipedia collections, in order to find automatically
those values for the utility configurations which perform best. We think that
selecting correctly the utilities there is room for improvement. Also we want to
endow the system with a powerful query processor, so we can use CAS topics.

For next edition of INEX, we plan to participate in other tasks, such as
’Focused’ or ’Best in Context’. In the case of this last task, we think that our
models, as the underlying formalism, influence diagram, is specially designed to
make decisions considering the context, can perform acceptably.

Also, we are developing new models based in these Probabilistic Graphical
Models, which improve the performance of the SID and CID models.

With these actions, we hope having a better performance, and therefore,
improving the position in ranking of the next edition of INEX forum.

Acknowledgments. This work has been jointly supported by the Spanish
Ministerio de Educación and Ciencia, and Junta de Andalućıa, under projects
TIN2005-02516 and TIC276, respectively.

References

1. L.M. de Campos, J.M Fernández-Luna, and J.F. Huete. The BNR model: founda-
tions and performance of a Bayesian network-based retrieval model. International
Journal of Approximate Reasoning, 34:265–285, 2003.

2. L.M. de Campos, J.M. Fernández-Luna, and J.F. Huete. Using context infor-
mation in structured document retrieval: An approach using influence diagrams.
Information Processing & Management, 40(5):829–847, 2004.

3. L.M. de Campos, J.M. Fernández-Luna, and J.F. Huete. Improving the Context-
based Influence Diagram Model for Structured Document Retrieval: Removing
Topological Restrictions and Adding New Evaluation Method. Lecture Notes in
Computer Science, 3408:215–229, 2005.

4. L.M. de Campos, J.M. Fernández-Luna, J.F. Huete, and A.E. Romero Garnata:
An Information Retrieval System for Structured Documents based on Probabilistic
Graphical Models. Proceedings of the Eleventh International Conference of Infor-
mation Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU), 1024 – 1031, 2006

5. F.V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, 2001.
6. I. H. Witten, A. Moffat, T. C. Bell Managing Gigabytes, Morgan Kaufmann, 1999.
7. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan and Kaufmann, San Mateo, 1988.
8. R. Shachter. Evaluating influence diagrams. Operations Research, 34:871–882,

1986.
9. R. Shachter. Probabilistic inference and influence diagrams. Operations Research,

36(5):527–550, 1988.

48

Information theoretic retrieval with structured
queries and documents

(DRAFT)

Claudio Carpineto1, Giovanni Romano1, and Caterina Caracciolo2

1 Fondazione Ugo Bordoni, Rome, Italy
{carpinet, romano}@fub.it

2 FAO, Rome, Italy
caterina.caracciolo@gmail.com

1 Introduction

Information retrieval through statistical language modeling has become popular
thanks to its firm theoretical background and good retrieval performance. One
goal of current research on structured information retrieval is thus to extend
such models to take advantage of structure information.

As a structure may be present on documents or queries or both, we are
interested in supporting not only unstructured queries on structured documents,
but also structured queries on unstructured documents as well as structured
queries on structured documents. Most of research work has considered the first
task, i.e., unstructured queries over structured docs, while some papers have
addressed using structured or semistructured queries on unstructured docs. Here
we take a unified approach.

Our basic retrieval model is the well known Kullback-Leibler divergence,
with backoff smoothing. In this paper we show how it can be extended to model
and support structured/unstructured queries on structured/ unstructured docu-
ments. We make a very general assumption on the type of structure imposed on
queries and/or documents, suitable for describing various structured data. We
also study how the extended model can be efficiently computed.

We finally report on our experiments at INEX 2006, in which we used a rough
approximation of the presented model. A full implementation of the model and
a more significant evaluation of its retrieval effectiveness are left for future work.

2 Information-theoretic retrieval model

Given a query Q and a document D, the score of D for Q is given by the negative
of the Kullback-Leibler (KL) divergence of the query language model θQ from
the document language model θD:

score(Q,D) = −KL(θQ|θD) = −
∑
w∈V

p(w|θQ)log
p(w|θQ)
p(w|θD)

(1)

49

This is a well known technique for ranking documents [4]. In order to compute
expression 1, we need to estimate p(w|θQ) and p(w|θD), i.e., the probability of
the word w given the query language model and the document language model,
respectively.

Usually this is done by using two probability distributions, one for ”seen”
words that occur in the text (query or document), and one for ”unseen” words
that do not occur in the text. This ”smoothing” is due to the fact that a given
text is usually too small a sample to accurately estimate the language model.
One classical smoothing technique is backoff ([3]). It is based on discounting
the probabilities of the seen terms, while the probability mass recuperated in
this way is redistributed over the unseen terms. Usually, the probability of seen
words is given by the maximum likelihood estimate applied to the text, and the
probability of unseen words is estimated from the whole document collection in
the same manner.

Let c(w, T) be the number of times the word w occurs in text T , c(w,C) be
the number of times the word w occurs in the collection C, |T | the number of
words in T , |C| the number of words in C. The probability of the word w given
the text language model is given by:

p(w|θT) =

{
ψ c(w,T)

|T | if w ∈ T
ξ p(w|C) if w /∈ T

(2)

This smoothing technique is very popular in the speech recogniton field and
it has also been used for text retrieval ([1], [6]).

3 Structured information-theoretic retrieval model

If the collection of documents is structured, the basic information retrieval model
is not satisfactory because it ignores the relationships between the documents.
For instance, in order to retrieve elements (components) from XML documents
it is natural to exploit the tree-based structuring of documents to enrich each
element’s description with the description of related elements ([2], [5]).

We assume that there is a partial ordering relation (≤) over the set of doc-
uments. For each document D, let D∗ be the set formed by the words that are
contained in any of the documents that are implied by D according to such a
relation, except for D itself; i.e., D∗ = {w |w ∈ Di, D ≤ Di, D 6= Di}.

We smooth the original document model by two probability distributions.
The first, estimated from D∗, gives importance to the terms that are logically
related toD. The second, estimated from the document collection, gives non-zero
probabilities to the terms that are neither in the document nor in its implied
documents.

p(w|θD) =

α c(w,D)

|D| if w ∈ D
β c(w,D∗)

|D∗| if w ∈ D∗

µ p(w|C) if w 6∈ D ∪D∗
(3)

50

In order to ensure that probabilities of all terms sum to 1, the following
relation must hold:

α + β +
∑

w 6∈D∪D∗

µ p(w|C) = 1 (4)

The same approach can be also used to estimate the query language model. A
query with an explicit structure, e.g. with a title, a description, and a narrative
field, is usually considered as a bag of words. However, it may be not convenient
to consider all the fields as equally important because some fields may just
contain verbose descriptions of other, shorter fields, and thus the longer fields
should be given a smaller weight.

By analogy with structured documents, we can smooth the original query
model p(w|Q), as determined by the query title, by two probability distribution,
one estimated from the complementary query representation given by the union
of description and narrative (denoted by Q∗), one estimated from the whole
collection.

p(w|θQ) =

γ c(w,Q)

|Q| if w ∈ Q
δ c(w,Q∗)

|Q∗| if w ∈ Q∗

π p(w|C) if w 6∈ Q ∪Q∗
(5)

The constraint on the sum of probability is in this case given by:

γ + δ +
∑

w 6∈Q∪Q∗

π p(w|C) = 1 (6)

Thus, in all we have six parameters (i.e., α, β, µ, γ, δ, π) and two equations
(i.e., expressions 4 and 6). In the full paper we will show how to estimate the
parameters in a more compact and elegant way. We will also show that the re-
sulting model can be computed efficiently because it does not require to compute
the probabilities of all terms in the collection for each document.

4 Experiments at INEX 2006

Due to tight scheduling and limited resources, we did not have time to experiment
with the full model. In our experiments we used a rough approximation of it.

We used a plain search engine to select for each topic a set of relevant docu-
ments from the Wikipedia collection. We then performed an element level anal-
ysis for each retrieved document to choose the best element(s) according to the
KL divergence. The first stage amounts to performing a fast discriminative se-
lection of candidate results using a restricted set of features (i.e., full documents
instead of single elements, no information about document structure, query titles
only). In the second stage, the full set of features is brought to bear to perform
fine selection/reordering of the results retrieved in the first stage. More details
on our experiments will be given in the full paper.

51

The retrieval performance of this approach was of course in the low part of
INEX 2006 ranking. However, given its simplicity and its very limited compu-
tational requirements, the results are quite interesting. They can be used as a
baseline for the full model.

References

1. Carpineto, C., De Mori, R., Romano, G., Bigi, B.: An information theoretic ap-
proach to automatic query expansion. ACM Transactions on Information Systems,
19(1):1–27, 2001.

2. Fuhr, N., GrossJohann, K.: XIRQL: A Query Language for Information Retrieval
in XML Documents: In Proceedings of SIGIR 2001, pages 172–180, New Orleans,
LA, USA,, 2001.

3. Katz, S.: Estimation of probabilities from sparses data for language model compo-
nent of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process. , 35:400–
401, 1987.

4. Lafferty. J., Zhai, C.: Document language models, query models, and risk mini-
mization for information retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research, Development in Information Retrieval, pages
111–119, New Orleans, LA, USA, 2001.

5. Ogilvie, P., Callan, J.: Language Models and Structured Document Retrieval: In
Proceedings of the INEX 2002 Worksop, pages 33–40, Schloss Dagsthul, Germany,
2002.

6. Zhai, C, Lafferty. J.: A study of smoothing methods for language models applied to
information retrieval. ACM Transactions on Information Systems, 22(2):179–214,
2004.

52

Dynamic Element Retrieval in the Wikipedia Collection

Carolyn J. Crouch, Donald B. Crouch, Murthy Ganapathibhotla, Vishal Bakshi

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract
When we began our initial experiments in XML retrieval in 2002, we were interested in determining the
utility of Salton’s vector space model for XML retrieval. Our interests shortly became centered on
dynamic element retrieval, i.e., the dynamic retrieval of elements at the desired degree of granularity.
During the past two years, our work [1, 2] has focused on building a system which, for a given query,
dynamically produces a rank-ordered list of elements that is virtually identical to the list produced by a
search of the same query against an all-element index of the collection. Dynamic retrieval requires only a
single indexing of the collection at the level of the basic indexing node. An initial retrieval is performed
against this index, returning in vector form the set of all nodes with positive correlations with the query.
We identify the documents represented by the n top-ranked elements in this set. Then, using schemas
representing their structures, the document trees are generated dynamically from the bottom up. At each
level of the tree, element vectors are generated and their term weights are computed using Lnu term
weighting.

The focus of our work in 2006 has been the generation of the ltu-weighted query for use in this process.
This query weighting process requires access to global information that is normally available through
indexing (in this case, the all-element index) and is not available here. (In [2005] we used an
approximation to this query.) A methodology for producing this information was devised during the past
year. Thus the ltu-weighted query is correlated with each of the Lnu-weighted element vectors as they are
generated, and a rank-ordered list of elements is produced. This process is repeated for every document in
the identified set. At the end, all such lists are merged, the elements sorted, and the final, rank-ordered list
is returned.

This methodology was applied to the 2004 and 2005 INEX collections, and we were able to establish that
the results produced by this method were virtually identical to those produced by the equivalent search of
the all-element index. (For details, see [3].) Many interesting questions arose, some of which are still
being addressed. We are currently applying our dynamic element retrieval methodology to the Wikipedia
collection. Wikipedia lacks the strong structure typified by the earlier INEX collections. In particular, it
contains untagged elements which must be incorporated in the tree-building process. And since our system
must be tuned to determine appropriate values of slope and pivot (required in the Lnu-ltu term weighting
process), it requires time to properly utilize the relevance assessments in this process. At this time, our
experiments are underway. We believe that our current methodology, without major changes in design, can
be successfully applied to this new collection.

References
[1] Crouch, C., Mahajan, A., and Bellamkonda, A. Flexible retrieval based on the vector space model.

In Fuhr, et. al. (Eds): Advances in XML Information Retrieval, Third International Workshop for
the Initiative for the Evaluation of XML Retrieval (INEX 2004), LNCS 3493, Springer Verlag,
2005, 292-302.

[2] Crouch, C., Khanna, S., Potnis, P., and Doddapaneni, N. The dynamic retrieval of XML elements.
In Fuhr, et. al. (Eds): Advances in XML Information Retrieval and Evaluation: Fourth Worlshop of
the Initiative for the Evaluation of XML Retrieval (INEX 2005), LNCS 3977, Springer Verlag,
2006, 268-281.

53

mailto:ccrouch@d.umn.edu

[3] Crouch, C. Dynamic element retrieval in a structured environment. ACM Transactions on
Information Systems, 24(4), 2006 (to appear).

54

The University of Kaiserslautern
at INEX 2006

Philipp Dopichaj

dopichaj@informatik.uni-kl.de
University of Kaiserslautern, Gottlieb-Daimler-Str.

67663 Kaiserslautern, Germany

Abstract. Digital libraries offer convenient access to large volumes of
text, but finding the information that is relevant for a given information
need is hard. The workshops of the Initiative for the Evaluation of XML
retrieval (INEX) provide a forum for testing the effectiveness of retrieval
strategies. In this paper, we present the current version of our search
engine that was used for INEX 2006: Like at INEX 2005, or search engine
exploits structural patterns in the retrieval results to find the appropriate
results among overlapping elements. This year, we examine how we can
change this method to work better with the Wikipedia collection, which
is significantly larger than the IEEE collection used in previous years.
We show that our optimizations both retain the retrieval quality and
reduce retrieval time significantly.

1 Introduction

The Initiative for the Evaluation of XML Retrieval (INEX)1 provides a testbed
for comparing the effectiveness of content-based XML retrieval systems. The
University of Kaiserslautern participated in the INEX workshop for the second
time in 2006. Our retrieval approach is mostly unchanged from the approach
we used in 2005: It is based on standard vector-space retrieval on the elements,
enhanced with XML-specific additions (context patterns). This year, it was our
aim to answer two questions:

– Do context patterns work well without using fuzzy logic? (Last year, we
introduced the concept of context patterns and implemented the using fuzzy
logic.)

– Can we improve the speed of our system without compromising quality by
discarding a large fraction of the intermediate results? (The Wikipedia col-
lection used this year is roughly eight times the size of the IEEE collection
from previous years.)

Context patterns address the choice of a suitable result granularity, one of
the central problems of element retrieval: Due to the tree structure of XML doc-
uments, retrieval results can overlap, so the search engine needs to decide which
1 see http://inex.is.informatik.uni-duisburg.de/

55

of the overlapping results are more suitable to answering the query. Context
patterns are based on the observation that the structural properties of retrieval
results, like length and position, provide valuable hints about the importance of
the retrieved elements.

Our paper is structured as follows: We first present a brief description of
our baseline retrieval system in Section 2 and then proceed to explain context
patterns in Section 3. Section 4 describes changes related to the scalability of our
search engine. Finally, we discuss the performance of our baseline and enhanced
results as evaluated in the INEX workshop in Section 5.

2 Baseline Search Engine

The basic structure of our retrieval system has not changed since last year [2,
3]; we repeat the description here for completeness. We use the Apache Lucene
information retrieval engine2 as the basis and add XML retrieval functionality.
Instead of storing only the complete articles from the document collection in
the index, we store each element’s textual contents as a (Lucene) document,
enriched with some metadata (most notably, the enclosing XML document and
the XPath within that document); see Fig. 1 for an example.

〈sec〉Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

XPath Indexed contents

/sec[1] Hello, world! How are you?
/sec[1]/b[1] world!
/sec[1]/i[1] are

Fig. 1: Source document and corresponding indexed documents as seen by Lucene.

Directly searching this index using Lucene would lead to bad results – overlap
is not taken into account at all, and many elements on their own are useless
because they are too small –, so we need to postprocess the Lucene results.
We regard the results from different input documents as independent, so we
can postprocess the results from each document separately (even concurrently).
Overlapping results from the same document are arranged in a tree that mirrors
the structure of the original XML document; this enables us to examine the
relationships between the elements. Thus, retrieval is executed in the five steps
depicted in Figure 2 (the context patterns from Section 3 are applied in step 3).

2.1 Query Processing

The queries in the INEX topics are formulated in NEXI, an XML query lan-
guage derived from XPath with additional information retrieval functions [7].

2 see http://lucene.apache.org

56

Operation Output

1. Process query and send it to Lucene Raw retrieval results (fragments)
2. Rearrange retrieval results One result tree per document
3. Postprocess the result trees One result tree per document
4. Merge the results Flat list of results
5. Adjust scores of short elements Flat list of results

Fig. 2: The retrieval process.

For content-only (CO) queries, we support the full syntax of NEXI with the
following modifications to the interpretation of the Boolean operators:

– We discard query terms with the “-” qualifier (instead of asserting that they
do not occur in the retrieved elements).

– Query terms prefixed with “+” are assigned a higher weight (instead of as-
serting that they occur in the retrieved elements).

– The modifiers “and” and “or” are ignored.

For content-and-structure (CAS) queries, only the last tag name in paths is
used for searching (for example, given //article//fm//atl, we prefer all atl
elements, not only those contained in //article//fm). Furthermore, we consider
the structural parts of the query only as hints for the best elements to retrieve.

3 Context Patterns

The search engine we described in the previous section provides the basis for
the implementation of our new approaches. On top of it, we implemented two
different enhancements that are executed as a postprocessing step.

Fortunately, there are several telltale signs what the role of a given element
in a text is, without having to examine the tag name.

We can achieve this by looking at result contexts of the retrieved nodes. For
each non-leaf node, the result context consists of this node and its children, and
the following data is stored for each node:

– The retrieval score of the node,
– the length of the node’s text (in words), and
– the position of the node in the parent node.

This information can be visualized in two dimensions, one for the lengths
and positions of the text fragments and the other for the score. Fig. 3 shows an
example XML fragment and how it can be visualized. The horizontal position of
the left-hand side of each rectangle denotes the starting position in the text of the
parent element, and its width corresponds to the length of the text it contains
(this implies that the parent element occupies the width of the diagram). The

57

〈sec〉
Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

position

0 1 2 3 4 5

sc
or

e

0

0.2

0.4

0.6

0.8

1

/s
ec

[1
]

//b
[1

]

//i
[1

]

Fig. 3: XML text and corresponding context diagram. The horizontal axis denotes
the positions and lengths of the text fragments, and the vertical axis shows the
score (in this case random numbers).

parent element (in the Fig. 3, the root element /sec[1]) is the reference for the
scale of the horizontal axis.

When we examined context graphs of some trial retrieval results, we real-
ized that we could often determine what elements were section titles or inline
elements, without referring to the original XML documents. Based on this ob-
servation, we defined a set of context patterns for formalizing the recognition of
certain structures. A pattern looks like, “if the first child in the context is short
and the parent is long, the first child is a title” (see Fig. 4 for an example).
This is too vague for Boolean logic, but fuzzy logic is perfectly suited to this
task. Fuzzy logic enables us to assign degrees of membership for the features,
instead of Boolean values [6]. For example, a fragment containing only one word
is definitely short, and a fragment containing 5000 words is definitely not short,
but what about one containing 20 words? With fuzzy logic, we do not need to
make a firm decision, but we can say that this fragment is short to a degree of
(for example) 50 %. Similarly, the Boolean operators like and, or, and not can
be expressed in terms of these degrees.

position

0 50 100 150 200 250 300

sc
or

e

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4: Example context graph for the title pattern. The short peak at the left is
the section title.

58

This year, in addition to evaluation the performance of patterns on the new
collection, we also wanted to evaluate whether using fuzzy logic really helps and
implemented a “crisp” version of the title pattern that simply regards all elements
shorter than 30 words as short.

The patterns alone do not change the retrieval results in any way, so we
need to take actions for modifying the relevant scores. For a match in a title, an
appropriate action is to increase the parent’s score (because the match indicates
that the corresponding section is highly relevant) and decrease the first child’s
score (because the title itself contains too little information to be of any use).

4 Coping with the Large Collection

The switch from the INEX 2005 to the INEX 2006 data set was a challenge;
the Wikipedia data collection [1] is roughly eight times as large as the IEEE
collection that was used in previous years (5.8 gigabytes for Wikipedia compared
to 742 megabytes for IEEE).

4.1 Keeping Metadata in Main Memory

Obviously, the search engine needs to have data about the precise location (doc-
ument, XPath) of a result in order to return it to the user. In addition to that,
our context patterns also require data about the word-based length and position
of the fragment.

This data must be accessed as quickly as possible. Unfortunately, the size of
the Wikipedia collection prohibits the straigtforward storage of this information
for each fragment indexed by ID in main memory, even in compressed form.
Storing this data on disk is not an option, either, because there may literally be
millions of intermediate results (step 2 from Figure 2), and even the best-case
assumption of one seek per result would be way too slow.

Therefore, we needed to devise a memory-effective way of storing the meta-
data in main memory; we had to sacrifice direct access by fragment ID (now
only the metadata for a whole document can be read at once), but avoiding the
cost of disk access more than alleviates the additional cost of decompression.

The basic idea is to keep a compressed version of the original document
structure with all text nodes replaced by the corresponding word count. For the
Wikipedia collection, this results in a metadata structure size of roughly 2% of
the size of the original XML files.

4.2 Discarding Intermediate Results

Even with the metadata compression scheme, obtaining the metadata for the
results is still the most expensive operation in the retrieval process. The metadata
includes the XPath and content length of the elements, and due to the way the
data is stored, the system has to obtain the metadata for all elements in one go.

59

Many of the elements do not show up in the final results anyway (for INEX,
only the 1,500 highest-ranking elements should be submitted), so it should be
possible to simply discard the results from low-scoring documents after step 2 in
the retrieval process (Figure 2); the metadata is needed for step 3. The problem
is that “low-scoring documents” is not well-defined: There may be many ele-
ments from the same document with a variety of retrieval scores, so ranking the
documents is not too straightforward (and indeed a task of its own in INEX).
One could calculate the average retrieval score for all elements in a document
and use that for sorting the documents. This would, however, be counterproduc-
tive for the “thorough” and “focused” tasks – a highly relevant element could be
overshadowed by many elements with a much lower RSV and thus be discarded.
Because of this, we use the maximum retrieval score in a document for sorting,
and keep all fragments from the 5,000 best documents.

5 Evaluation

One important aspect of INEX is the comparison of XML search engines. The
participating organizations submit runs consisting of up to 1,500 results for each
topic, and the pooled results are then manually evaluated for relevance. This
relevance information is used as input to several metrics [5] which provide a
numerical value denoting the quality of a run’s retrieval results.

Although the currently available results3 are incomplete, three tentative con-
clusions can be drawn at this point (see Table 1 for details):

– Compared to other participants’ results, our results are on a low level.
– Discarding intermediate results does not appear to affect retrieval quality

negatively; in fact, retrieval quality is in many cases slightly higher (though
not significantly so). Retrieval time is reduced significantly.

– Whether or not fuzzy logic improves the performance for context-pattern-
based runs remains unclear; for CO.Thorough and MAep, fuzzy logic is
slightly better, for CO.Focused, it is slightly worse.

Table 1: INEX 2006 results.

CO.Thorough CO.Focused

Run MAep Rank nxCG@25 Rank

Fuzzy patterns 0.0184 30 0.1758 53
Crisp patterns 0.0160 41 0.1774 51
Crisp patterns (best 5,000 documents kept) 0.0161 39 0.1779 50

3 see http://inex.is.informatik.uni-duisburg.de/2006/adhoc-protected/results.html

60

References

1. Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus. SIGIR Forum,
40(1), 2006.

2. Philipp Dopichaj. The University of Kaiserslautern at INEX 2005. In Fuhr et al.
[4].

3. Benedikt Eger. Entwurf und Implementierung einer XML-Volltext-Suchmaschine.
Master’s thesis, University of Kaiserslautern, 2005.

4. Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, editors. Advances
in XML Information Retrieval and Evaluation: Fourth Workshop of the INitiative
for the Evaluation of XML Retrieval (INEX 2005). Springer, 2006.

5. Gabriella Kazai and Mounia Lalmas. INEX 2005 evaluation metrics. In Fuhr et al.
[4], pages 16–29.

6. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics,
chapter 13, pages 367–388. Springer, 2nd edition, 2004.

7. Andrew Trotman and Börkur Sigurbjörnsson. Narrowed extended XPath I (NEXI).
In Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltán Szlávik, editors, Ad-
vances in XML Information Retrieval: Third International Workshop of the Initia-
tive for the Evaluation of XML Retrieval (INEX 2004). Springer, 2005.

61

Indexing ”Reading Paths” for a Structured
Information Retrieval at INEX 2006

Mathias Géry
Mathias.Géry@univ-st-etienne.fr

Laboratoire Hubert Curien - UMR CNRS 5516
Université Jean Monnet - Saint-Étienne

Abstract. We present in this paper our XML information retrieval ex-
periments at INEX 2006 (ad-hoc track). We have developed a Struc-
tured Information Retrieval System based on an IR model considering
Web documents as ”reading paths”, instead of a set of atomic and flat
pages. Our algorithm is based on information propagation along the read-
ing paths. We present some preliminary results at INEX 2006 (Ad-hoc
track).

Keywords: Web IR, Indexation, Web structure, Reading Paths, Information
Propagation

1 Introduction

The Web is obviously structured: it is composed of structured documents (the
HTML pages can be structured), and it has also hypertext characteristics (the
HTML pages can be linked together). The Wikipedia collection used by INEX is
an example of such a structure, even if the structure of XML Wikipedia articles
is homogeneous and not very representative of the Web structure. Document
structure is an essential constituent of information description. One has to con-
sider it during an IR process: the index should represent the semantic content
of documents, including the structure. The IR model has to integrate links and
their impact directly into the document model, instead of applying a simple
re-ranking above a classical system.

2 Web structure and IR

Several research directions have been proposed to improve the use of Web struc-
ture in IR, especially in XML IR as studied by the INEX evaluation campaign.
Some specific techniques propose to query explicitly the structure of documents
(structured queries, [5]), that is not suitable for the heterogeneous Web. Two
other approaches use the “global link information” (i.e. using structure inde-
pendently from the query) for the indexing phase of an IRS: “information prop-
agation” and “popularity propagation”. Another approach uses the “local link

62

information” (i.e. using structure considering the query): “relevance propaga-
tion”. In both local and global cases, the idea is to propagate information along
the links during the phase of querying and/or indexing.

Popularity propagation considers that “A good page is a page referenced by
many other good pages”, typically with the calculation of a “prestige score”
for each page. A popular implementation is Google PageRank algorithm, which
calculates such a prestige score at indexing time, independently to the query [1].

Information propagation considers links by propagating information along
them, in order to retrieve the structured documents considering their sub-parts,
but also in order to retrieve the sub-parts considering the whole documents. For
example, XFIRM system propagates words from sub-parts of a document to the
top, and from the top to the bottom [8]. The search engine Google propagates
words from context (link anchors, i.e. fragments of text, on which a user can click
in order to activate a hypertext link) to a given page considering that “anchors
often provide more accurate descriptions of web pages than the pages themselves”
[1]. The anchors words are added to the index of the referenced page.

Based on the same principle than popularity propagation, relevance propa-
gation calculates a “prestige score”, for a subset of pages that have been pre-
selected considering the query. For example, the algorithm HITS calculates two
“prestige scores” at query time: the Hubs and Authorities, assuming that “A
good Hub points to many good Authorities, and a good Authority is pointed to
by many good Hubs” [4]).

These links-based techniques show the interest of IR community in using
structure for IR. Search engines seem to give good results on the Web exploiting
the links, but the evaluation of these techniques is disappointing. [3] [2] show
that there is no significant improvement of IR quality using the links network.
Most of the systems are based on a Web model simplified to a directed graph
with HTML pages as nodes and hyperlinks as edges (“triple-bag”: bag-of-words,
bag-of-nodes (Web pages), bag-of-links). Few methods try to analyze what a link
means regarding information, and how to consider them for IR.

We propose a Web model more structured than the uniform “triple-bag”,
in order to really improve IR using links-based techniques. This model should
describe the information as the authors have thought it, and index it as the
readers read it.

3 Information propagation

Our IR model considers three aspects of information reading on the Web. Two
of them consider the reading of a “document” (navigation inside a “document”),
and are based on a tree structure and a reading path structure. The third as-
pect deals with the navigation outside a document, considering the concept of
“context”.

63

INEX collection is composed by structured documents (XML), i.e. based on
a hierarchical structure. Several works propose to propagate information and/or
relevance from sub-parts of a document to the top, and from the top to the
bottom. In this paper, information propagation is also based on a hierarchical
structure, but we focus on the reading paths indexation. We propagate infor-
mation along ”reading paths links”, i.e. from one node (section) to its brother
(next section) in the document tree.

3.1 INEX Wikipedia collection

Ad-hoc collection at INEX 2006 is composed by 659.388 XML articles (Wikipedia
entries). Each XML document is composed by tens of sections, sj , paragraphs,
etc.

∀ai ∈ WikipediaCollection, ai = (s1, s2, ...sj , ...sn)
INEX collection test includes 125 queries, each query is composed by 5 fields

: title, castitle, description, narrative, ontopics keywords. We use only the ”title”
field.

3.2 VSM indexation

The atomic document unit considered by our SIRS is a first level XML section
(XML tag <s>). We don’t use sub-sections, sub-sub-sections, etc., or any other
XML element.

Our system is based on the Vector Space Model (VSM) [7] that has been well
studied for atomic contents. Each article ai and each section si is represented
by a vector of weighted terms: ai = (wi1, wi2 ... wij ... win); n is the number of
terms in the collection.

3.3 Information propagation: reading paths for IR

We assume that a reader will read sections in their appearing order. Aiming to
simulate human reading and consider this order, our algorithm is based on read-
ing memory hypothesis: the reading of a si depends on the previous s1, s2, ...si−1

that were read. For example, the information in the “introduction” section is gen-
erally used to understand the remaining of the reading path (section 2, section
3, ..., conclusion). Information that is read at the beginning of the reading path
has more importance than the others, considering that it is reused afterward as
reading memory. So, the reading memory benefits from an accumulation effect
along the reading path.

Our choice is to propagate information from each section to the following sec-
tions. The terms appearing in a section si have to be considered while calculating
the relevance of all sections sj with i < j.

We assume that the importance of a section on its following sections decrease
with the distance between sections.

64

(a) ∀ ai ∈ collection, BM25 produces vectors :
ai =, (wi1, wi2 ... wip ... win)

(b) ∀ ai ∈ collection,∀ sj ∈ ai, BM25 produces vectors :
sj =, (wj1, wj2 ... wjp ... wjn)

(c) ∀ai ∈ collection, for j = 1 to sizeof(ai)
∀sectionk, k ∈ [j + 1..sizeof(articlei)]

if (k - j) <= d max then
sk+ = α.

sj

(k−j)

endif

Fig. 1. Information propagation

The parameters α and dmax (maximum distance) are fixed to 0.16 and 3 in
our experiments.

4 Preliminary results

Wikipedia collection at INEX 2006 is composed by 659.388 XML articles. Our
algorithm splits these articles in 1.909.598 first level sections. We use the BM25
weighting function [6], and a simple hand-made stopwords list.

We have submitted 2 runs for the Thorough sub-task of the Ad-Hoc track:

• Sections level 1, BM25 (baseline run): steps a) and b) of our algorithm.
• Section level 1, BM25 with information propagation: also step c) of our algo-

rithm.

Our baseline run gives a score of 0.01, ranked 64th/106. Our second run (sim-
ple information propagation), is not conclusive, as the score obtained is below
our baselin: 0.0091, ranked 69th/106. We have to investigate more deeply these
experiments, in order to determine the impact of each one of the propagation
parameters. We think that we can improve these results, tune the parameters
and especially taking into account various document granularities, i.e. various
XML elements instead of section level only.

5 Conclusion and future works

Our model considers the Web as a set of reading paths, instead of a set of flat,
atomic and independent Web pages. Our INEX 2006 experiments implement
only one aspect of our IR model: information propagation along reading path.
However, we still have to investigate deeply the impact of our approach on IR.

Our objectives are to experiment with INEX test collection the other reading
paths specificities. Our problematic covers a large set of questions: Is it inter-
esting to index various documents granularities ? Take into account the nodes

65

ordering ? Accumulate information along reading path ? Combine reading path
indexation and more classical hierarchical indexation ? Is it interesting to index
a ”document” (a reading path) that is composed by several nodes extracted
from a XML document ? How can we extract these ”documents” ? How can we
identify reading links ?How can we extract these ”documents” ? How can we
identify reading links ?

References

1. S. Brin and L. Page. The anatomy of a large-scale Hypertextual Web Search Engine.
In 7th World Wide Web Conference (WWW’98), Brisbane, Australia, April 1998.

2. D. Hawking and N. Craswell. Overview of the TREC-2001 Web Track. In 10th
Text REtrieval Conference (TREC’01), pages 61–67, Gaithersburg, Maryland,USA,
November 2001.

3. Jacques Savoy et Yves Rasolofo. Report on the TREC-9 Experiment: Link-based
Retrieval and Distributed Collections. In 9th Text REtrieval Conference, Gaithers-
burg, Maryland, United States, November 2000.

4. J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environnement. Journal
of the ACM, 46:604–632, September 1999.

5. A. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Journal
of Digital Libraries, 1:68–88, 1997.

6. S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25 extension to multiple
weighted fields. In CIKM 2004, pages 42–49, Washington, DC, November 2004.

7. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Janvier 1983.

8. K. Sauvagnat and M. Boughanem. Propositions pour la pondration des termes et
l’valuation de la pertinence des lments en recherche d’information structure. In
3th COnfrence en Recherche d’Informations et Applications (CORIA 2006), Lyon,
France, March 2006.

66

GPX at INEX 2006
Shlomo Geva

Faculty of Information Technology
QUT

Australia
s.geva@qut.edu.au

Abstract – we describe the approaches taken at INEX 2006 in the ad-hoc retrieval track.

1. Introduction

The INEX 2006 Ad-hoc track consisted of 4 tasks, namely Thorough, Focused, All In
Context and Best In Context retrieval. The reader is assumed to be familiar with the task
definitions.

We have used the GPX search engine. The software was ported in 2006 from C# and
MS-Access to Java and the IBM Cloudscape database. This was done to achieve
speedup in searching, but the basic system remained almost unchanged. The entire set of
125 topics was processed in under 15 minutes on a 3MHz Pentium PC. We provide
some brief details on the system in the next section. We also describe the approaches we
took to the various tasks.

2. The GPX Search Engine

The search engine is based on XPath inverted lists. For each term in the collection we
maintain an inverted list of XPath specifications. This includes the file name, the
absolute XPath expression identifying a specific XML element, and the term position
within the element. The actual data structure is design for efficient storage and retrieval
and will be described in full details in the final post-proceedings paper.

Retrieval is performed by processing the NEXI expression and interpreting the query
constraints to combine the inverted lists. In the simple case of a CO query we simply
compute scores for all elements that contain at least one of the search terms. The score of
an element is computed as

Equation 1: Calculation of a Leaf Element’s Relevance Score

∑−
n

=i i

in

f
tK=L

1

1

Here n is the count of unique query terms contained within the leaf element, K is a small
integer (we used K=5). The term Kn-1 scales up the score of elements having multiple
distinct query terms. IT should be noted that the heuristics of rewarding multiple distinct

67

mailto:s.geva@qut.edu.au

terms is essentially the same as taking into account query terms that do not appear in the
elements. The system is not sensitive to the value of K and a value between 3 and 25
produces little difference in results. The sum is over all n terms that are found within
the element where ti is the frequency of the ith query term in the leaf element and fi is the
frequency of the ith query term in the collection. It should be noted that similar results
are obtained if we use the TF-IDF to compute the sum, but it is not lead to significantly
different results in our experience.

Equation 2: Calculation of a Branch Element Relevance Score

∑
n

=i
iLD(n)=R

1

Where:

 n = the number of children elements
 D(n) = N1 if n = 1

 N2 Otherwise
 Li = the relevance score of the ith child element

The value of the decay factor D depends on the number of relevant children that the
branch has. If the branch has one relevant child then the decay constant is smaller
0<=N1<N2<1. A branch with only one relevant child will be ranked lower than its child.
The decay factor N2 may be chosen large enough so that a branch with several relevant
children will be ranked higher than its descendants. Thus, a section with a single relevant
paragraph would be judged less relevant than the paragraph itself, but a section with
several relevant paragraphs might be ranked higher than any of the paragraphs.

3. Thorough Retrieval

All the QUT runs were generated with GPX search engine, starting with Thorough
retrieval. The query is parsed and interpreted as an XPath expression in a straight
forward manner, albeit with NEXI loose interpretation. The CO topic runs are
generated with a straight forward application of equations 1 and 2, with the elements
sorted by score. With the COS queries it is possible to enforce results of a particular
type (i.e. strict interpretation) or to return results by score, ignoring the element type.
The search is also more specific in that it does take into account the structural cues for
retrieval and the inverted lists are filtered according to the query specification. If, for
instance, the query specifies that a template name should be about xyz, then the inverted
list for the term xyz is filtered to eliminate all occurrences that are not in a template name
context. We have experimented with several settings of the decay factor, with strict and
loose interpretation of NEXI expressions, and with various query expansion techniques.

68

3. Focused Retrieval

Here we started from Thorough results and selected the highest scoring element on a path
by filtering. We keep only elements that have a higher score than any descendent and
ancestor.

4. Best in Context

We tested a trivial approach here – we simply kept the highest scoring element in each
document. We made no attempt to choose more wisely and this is not necessarily a good
strategy, and did not experiment with the strategy. In hindsight perhaps we should have,
since as it turn out the mystery metric could be kinder to certain other strategies.
Nevertheless this trivial approach seems to have produce reasonable results with the
BEPD and EPRUM-BEP-Exh-BEPD metrics when using low values of the evaluation
parameter A.

5. All in Context

Here the Thorough runs were filtered. The runs were sorted by file score and within each
file the elements sorted by score.

6. Preliminary results

The results of retrieval were somewhat mixed. Very good results were obtained in the
Thorough task, and the Best in Context task with low A values. Reasonable results were
obtained in the Focused task, and slightly better when using the overlap off setting.
Further analysis is required to determine what works, what doesn’t, and why. It will
probably be a lot easier with the mystery metrics finally revealed…

69

Robert Gordon University at INEX 2006: Adhoc
Track

Fang Huang, Stuart Watt, David Harper, and Malcolm Clark

School of Computing, The Robert Gordon University, Scotland
{fah, sw, djh, mc}@comp.rgu.ac.uk

Abstract. This paper describes the participation of the Information Re-
trieval and Interaction group of Robert Gordon University in the INEX
2006 ad hoc track. We focused on two questions: “What potential evi-
dence do human assessors use to identify relevant XML elements?” and
“How can this evidence be used by computers for the same task?”. Our
main strategy was to investigate evidence taken not only from the con-
tent, but also from the shallow features of how texts were displayed.
We employed the vector space model and the language model combining
estimates based on element full-text and the compact representation of
the element. We analyzed a range of non-content priors to boost retrieval
effectiveness.

1 Introduction

In this paper, we describe our participation in the INEX 2006 ad hoc track.
We conducted experiments to retrieve XML elements that have similar features
judged to be relevant by human assessors. The criteria used by a human assessor
for judging relevance involve a complex variety of individual factors. However,
it is evident that not every word of a given document catches the reader’s eye.
In most cases, people judge a document’s relevance by skimming over the titles,
section titles, figures, tables, and words emphasized in bold or larger fonts. We
proposed, in this paper, to extract and put together all those most representative
words to build a compact form of a document (or an XML element). We em-
ployed retrieval models that emphasized the importance of the compact form in
identifying the relevance of a document (or an XML element). We also conducted
preliminary experiments to investigate the potential features of human-retrieved
elements regardless of their content, and introduced a range of priors to the
language model to enhance retrieval effectiveness.

The remainder of this paper is organized as follows: Section 2 outlines our
ideas for building a compact representation of a document (or an XML element).
Section 3 describes the vector space model we used. The mixture language model
is presented in section 4. Section 5 offers a detailed description and discussion
of our INEX experiments and results. The final part, section 6, concludes with
a discussion and possible directions for future work.

70

2 Compact Representation of an XML Element

Even a brief look at the procedure adopted by a human assessor when judging
a document’s relevance to a query, shows quite clearly that not all the details
of the document are taken fully into consideration. Some words attract more
or less of the reader’s attention. It is our contention that words appearing in
titles, figure captions, or printed in bold, italics, larger fonts, and different col-
ors are frequently more representative of the document’s relevance. Figure 1
shows a sample text taken from a document named “Hercule Poirot” from the
Wikipedia collection. Extracting words from the figure caption, and words that
are underlined, or displayed in bold or larger size, we get a list of words con-
taining “Hercule Poirot fiction character Belgium England World War I Private
detective Arthur Hastings”. This list of words provides clues to the meaning and
content of the original text. And we therefore believe it can be used to enhance
retrieval effectiveness. Based on the this consideration, we proposed to extract

Hercule Poirot (pronounced) is a fiction character, the primary
detective of Agatha Christie’s novels. He appears in over 30 books.

David Suchet as Poirot

The character was born in Belgium,

and has worked as a Belgian police
officer, but moved to England during

World War I and started a second
career as a private detective. Poirot

is remarkable for his small stature
and egg-shaped head, his meticulous
moustache, his dandified dressing
habits, his absolute obsession with

order and neatness, and his disdain for detective methods that include
crawling on hands and knees and looking for clues. He prefers to
examine the psychology of a crime, once even betting his best friend
and sometime partner, Arthur Hastings, that he could solve a case
simply by sitting in an easy chair and using his ”little grey cells.”

Figure 1: a sample text

these representative words from the original text to build a compact form of a
document and emphasize its importance in identifying the relevance of the doc-
ument. In our experiments, retrieval units were XML elements. Consequently,
the method was adapted to XML element-based (the whole document can be
considered as an XML element as well), i.e., for each XML element, we built
a compact representation of it by extracting words from titles, subtitles, figure
captions, and words printed in bold, italics or larger fonts from the text nested
by the element. The compact form was then used in our retrieval experiments
based on vector space model and mixture language models.

71

3 Vector Space Model

We used the vector space model, the default similarity measure in Lucene[3], i.e,
for a collection C, a document d and query q:

sim(q, d) =
∑
t∈q

tft,q · idft

normq
· tft,d · idft

normd
· coordq,d · weight (1)

where

tft,x =
√

freq(t, X) (2)

idft = 1 + log
|C|

freq(t, C)
(3)

normq =
√∑

t∈q

tft,q.idf2
t (4)

normd =
√
|d| (5)

coordq,d =
|q ∩ d|
|q| (6)

In our experiment, retrieval units were XML elements. An element’s relevance
was measured based on the element’s full-text and the compact representation
of the element, i.e.,

sim(q, e) =
sim(q, efull) + sim(q, ecompact)

2
(7)

where e is an XML element, efull is the full text nested in element e, and ecompact

is the compact form of element e.

4 Language Model

We present here a retrieval model based on the language model, i.e., an element’s
relevance to a query is estimated by

P (e|q) ∝ P (e) · P (q|e) (8)

where e is an XML element; q is a query consisting of the terms t1,...,tk; the
prior, P (e), defines the probability of element e being relevant in absence of a
query; P (q|e) is the probability of the query q, given element e.

72

4.1 Probability of the query

Assuming query terms to be independent, P (q|e) can be calculated according to
a mixture language model:

P (q|e) =
k∏

i=1

(λ · P (ti|C) + (1− λ) · P (ti|e)) (9)

where λ is the so-called smoothing parameter; C represents the whole collec-
tion. P (ti|C) is the estimate based on the collection used to avoid sparse data
problem.

P (ti|C) =
doc−freq(ti, e)∑

t′∈D doc−freq(t′ , C)
(10)

The element language model, P (ti|e), defines where our method differs from
other language models. In our language model, P (ti|e) is estimated by a linear
combination of two parts:

P (ti|e) = λ1 · P (ti|efull) + (1− λ− λ1) · P (ti|ecompact) (11)

where λ1 is a mixture parameter; P (ti|efull) is a language model for the
full-text of element e; P (ti|ecompact) is the estimate based on the compact rep-
resentation of element e. Parameter λ and λ1 play important roles in our model.
Previous experiments[1,7] suggested that there was a correlation between the
value of the smoothing parameter and the size of the retrieval elements. Smaller
average sizes of retrieved elements require more smoothing than larger ones.
In our experiments, the retrieval units, which are XML elements, are relatively
small. Consequently, we set a large smoothing parameter λ = 0.3 and used equal
weights for the full text and the compact representation, i.e., λ1 = 0.35.

4.2 Element priors

The Prior P (e) defines the probability that the user selects an element e without
a query. Elements are not equally important even though their contents are
ignored. Several previous studies[1,5] reported that a successful element retrieval
approach should be biased toward retrieving large elements. Furthermore, we
believe relevant elements are more likely to appear in certain parts of a document,
e.g., the title, first paragraph, first section, etc.

We conducted a preliminary experiment to investigate potential non-content
features that might be used to boost retrieval effectiveness. The features consid-
ered included size, type, location, and the path length of an element. Location
was defined as the local order of an element ignoring its path. The path length
of an element equals to the number of elements which nest it. For example, for
an element /article[1]/p[1] (the first paragraph in the document), type of this
element is ‘paragraph’, location is represented as ‘1’ (the first paragraph), and
the path length is 1. The main objective of our experiment was to find out the

73

distribution of the above features among the relevant elements. Two human as-
sessors were asked to search the Wikipedia collection, retrieve relevant XML
elements, and analyze retrieved results. Details of the procedure were: i) query
creation: we created 216 queries. A query was a list of keywords or a one-sentence
description of the information need which was written in natural language and
without regard to retrieval system capabilities or document collection peculiari-
ties. ii) element retrieval: in this step, each query created in the previous stage
was used to explore the Wikipedia collection. The TopX[6] XML search engine,
which is provided through the INEX website, was used for this task. Human as-
sessors judged the top 100 results retrieved by TopX for each query, assessed the
relevance of each of the retrieved elements, and recorded the path for each of the
relevant elements. iii) feature distribution analysis: paths for relevant elements
were analyzed automatically by a computer program. Results are shown in Table
1. Part (a) of the table shows that the total number of relevant elements is 9142.
Among these elements, most of them are articles, sections, and paragraphs. The
total number of elements of these three types is 8522, which accounts for 93.2%
of the total amount. Part (b) shows the relevant elements tend to appear in the
beginning parts of the text. The whole documents are excluded in this analysis,
as the location feature is not applicable for the whole documents. The total num-
ber of the elements excluding whole documents is 3316. Elements with location
value of ‘1’, ‘2’, ‘3’ account for 88.1%(2920 out of 3316) of the total amount.
Part (c) shows relevant elements are not likely to be nested in depth. Again,
whole documents are excluded. Elements that only nested by the whole article
(path-length=1, e.g., /article/section, /article/p, etc.) constitute the majority
(2089 out of 3316, i.e., 63.0%). Only 8.4% (280 out of 3316) of relevant elements
are of path length longer than 3.

Table 1. Distribution of element shallow features

(a) (b) (c)

type number

article 5826
section 2098
paragraph 598
others 620
total 9142

location-value number

1 1588
2 789
3 543
≥ 4 396
total 3316

path-length number

1 2089
2 835
3 112
≥ 4 280
total 3316

Our preliminary experiments indicated that relevant elements had some non-
content features which could be used to boost retrieval effectiveness. We did not
analyze the size of the elements in our experiment, because some studies[1,5]
have already concluded that a successful element retrieval approach should be
biased toward retrieving large elements.

74

Based on the above analysis, consider non-content feature set F={|e|,|epath|,elocation},
where |e| is the size of element e measured in characters; |epath| is the path length
of e; and elocation is the location of e. Assuming features are independent, we
calculated the prior P(e) by the following equation:

P (e) =
3∏

i=1

P (e|Fi) (12)

where Fi is ith feature in set F. In the experiments, we chose a uniform length
filter to ensure the retrieval of larger sized XML elements. The threshold used
to filter out short elements was set to 120 characters, i.e.,

P (e| |e|) =
{

1 |e| ≥ 120
0 otherwise

(13)

The decision to measure in characters instead of words was based on the consid-
eration that smaller segments like “I like it.” contains little information, while a
sentence with three longer words tends to be more informative.

P (e||epath|), the prior based on epath in our experiments was calculated by:

P (e| |epath|) =
1

1 + |epath| (14)

P (e|elocation), the prior based on elocation was calculated by:

P (e|elocation) =
1

elocation
(15)

5 INEX Experiments

In this section, we present our INEX experiments in participating the Thorough
task.

5.1 Index

We created inverted indexes of the collection using Lucene[3]. Indexes were word-
based. All texts were lower-cased, stop-words removed using a stop-word list, but
no stemming. For each XML element, all text nested inside it was indexed. In
addition to this, we added an extra field which corresponded to the compact
representation of the element. The indexing units could be any types of XML
elements. However, due to the time restrictions placed on our experiments, we
only indexed three types of elements: article, section, and paragraph.

5.2 Query processing

Our queries were created using terms only in the <title> or <description> parts
of topics. Like the index, queries were word-based. The text was lower-cased and
stop-words were removed, but no stemming was applied. ‘+’, ‘-’ and quoters in
queries were simply removed. We process the <description> part of topics by
identifying and extracting noun phrases[4] to form queries.

75

5.3 Runs and results

We submitted the following runs for the Thorough task.

1. SVM and nl-SVM: runs using vector space model based on full-text and
compact representation of elements. For LM-1, queries were created using
terms in the <title> field. And queries for nl-LM-1 were created from the
<description> parts.

2. LM-2 and nl-LM-2: runs created using mixture language model based on
full-text and compact representation of elements. Queries for the runs were
created from <title> and <description> fields, respectively.

3. LM-1 and nl-LM-1: runs created using language model based on compact
representation of elements only, i.e., equation (11) in section 4 is replaced by

P (ti|e) = (1− λ) · P (ti|ecompact) (16)

where λ = 0.3. Queries for the runs were created from <title> and <de-
scription> fields, respectively.

Table 2 gives our overall results. Part (a) of the table shows the results of
runs where the queries were created using <title> parts of the topics, and part
(b) corresponds to queries created using <description> fields of topics. For runs
using language models, estimates based on compact representation only(LM-1
and nl-LM-1) achieved comparable performances with estimates based on the
combination of full-text and compact representation (LM-2 and nl-LM-2). This
confirmed our hypothesis that the compact representation generated by extract-
ing words from the original text is effective for element retrieval. The vector
space model based on combination of full-text and compact representation out-
performed our language model. However, due to the pressure of time, we did not
submit baseline runs for the same retrieval model based on full-text or compact
representation solely for comparison.

Results of each pair of runs using the same retrieval method (e.g., VSM and
nl-VSM) show no significant difference. This prompts us to conclude that natural
language queries work quite well after some shallow pre-processing.

Table 2. Results for the Thorough runs

(a) (b)

Run MAep iMAep

VSM 0.0157 0.0094
LM-1 0.0095 0.0043
LM-2 0.0094 0.0043

Run MAep iMAep

nl-VSM 0.0153 0.0092
nl-LM-1 0.0091 0.0042
nl-LM-2 0.0091 0.0041

76

6 Conclusions and Future Work

We have presented, in this paper, our experiments for the INEX 2006 evalua-
tion campaign. We assumed important words could be identified according to
the ways they were displayed in the text. We proposed to generate a compact
representation of an XML element by extracting words appearing in titles, sec-
tion titles, figure captions, tables, and words underlined or emphasized in bold,
italics or larger fonts from the text the element nesting. Our retrieval methods
emphasized the importance of these words in identifying relevance. Results of
the Thorough task showed that estimates based solely on compact representa-
tion performed comparably with estimates using combinations of full-text and
compact representation. This indicated that compact representation provided
important clues to content of the original element, as we had assumed.

We also investigated a range of non-content priors. Our preliminary experi-
ment indicated that relevant elements tended to be larger elements, such as whole
articles, sections, paragraphs. Furthermore, relevant elements were more likely
to appear in certain locations, such as the first element (e.g. first paragraph) of
a document. And they were not likely to be deeply nested in the structure. We
implemented priors in our language models, but the limited time at our disposal
meant that we could not submit baseline runs for comparisons of how these
priors work.

Our future work will focus on refining the retrieval models. Currently, the
compact representation of an element is generated by words from certain parts
of the text. However, the effectiveness of this method depends on the type of the
documents. For example, in scientific articles, section titles (such as introduction,
conclusion, etc) are not very useful for relevance judgement, whereas section titles
in news reports are very informative. In the future, we will explore different
patterns for generating compact representations depending on types of texts.
This might involve genre identification techniques. We will investigate different
priors’ effectiveness and how different types of evidence can be combined to boost
retrieval effectiveness.

7 Acknowledgments

We would like to thank Ulises Cervino Beresi for his help in indexing tasks.

References

1. Kamps J., Marx M., de Rijke M. and Sigurbjornsson B. XML retrieval: What to
retrieve? Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2003

2. Kamps J., de Rijke M. and M.Sigurbjornsson B. Topic field selection and smoothing
for XML retrieeval. Proceedings of the 4th Dutch-Belgian Information Retrieval
Workshop, 2003

3. Lucene. The Lucene search engine, 2005. http://jakarta.apache.org/lucene

77

4. Ramshaw L. and Marcus M. Text chunking using transformation-based learning.
Proceedings of the Third ACL Workshop on Very Large Corpora, 1995

5. Sigurbjornsson B., Kamps J. and de Rijke M. An element-based approach to XML
retrieval. INEX 2003 Workshop Proceedings, 2004

6. Theobald M., Schenkel R. and Weikum G. An Efficient and Versatile Query Engine
for TopX Search Proceedings of the 31th International Conference on Very Large
Databases (VLDB), Trondheim, Norway,2005

7. Zhai C. and Lafferty J. A study of smoothing methods for language models applied
to ad hoc information retrieval. Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2001

78

Tuning and evolving retrieval engine by training on
previous INEX testbeds: preliminary work

Gilles Hubert

IRIT/SIG-EVI, 118 route de Narbonne, F-31062 Toulouse cedex 9
hubert@irit.fr

Abstract. This paper describes the retrieval approach proposed by the SIG/EVI
group of the IRIT research centre at INEX’2006. This XML approach is based
on direct contribution of the components constituting an information need. This
paper focuses on the impact of corpus change between INEX’2005 and
INEX’2006. This paper describes the search engine configurations and evolu-
tions resulting from training on previous INEX testbeds and used to participate
to INEX’2006. It presents also the first partial results of the experiments carried
out at INEX’2006.

1 Introduction

Since the beginning of the INEX initiative, various XML retrieval systems and various
evolutions of these systems were proposed. XML retrieval needs to take into account
both content and structural aspects. XML retrieval systems can be separated into sys-
tems based on probabilistic models [7][10][11][14], systems based on vector space
models [2][4][5][8] and systems based on databases [3][9].
A framework such as INEX is useful to try to estimate a global effectiveness of a
system and to determine the contexts adapted to a system. Among the systems that
participated to INEX previous years and that obtained globally good results there are
approaches based on vector space models such as [4][8], probabilistic methods such
as [10][14] and database systems such as [9] depending on task and quantisation.
In this paper, we present an IR method based on a vector space model. However, this
approach is based on direct contribution of each component of the query and particu-
larly on the presence of each term constituting the query. The method meets other
proposals such as [4][12] in some principles but differs from heuristics, score aggrega-
tion principle or XML structure management. Different parameters are intended to
provide configuration possibilities to adapt the method notably according to task and
quantisation.

In the remainder of this paper ,Section 2 summarizes the objectives of this year par-
ticipation to the INEX’2006 round. Then, a presentation of the guiding principles on
which relies the retrieval method is done in Section 3. Section 4 details the submitted
runs and the partial obtained results. Section 5 concludes this paper.

79

2 Participation objectives

Participating to INEX this year had multiple objectives:

- On the one hand the interest was to estimate the influence of changes intro-
duced in the INEX 2006 framework regarding corpus and tasks. The new
Wikipedia corpus has features different from the past IEEE corpus notably
regarding corpus size, document contents and document structures. Further-
more, new tasks have been defined i.e. Best in Context and All in Context. In
addition, runs using queries on content only and runs using queries on con-
tent and structure were merged for evaluation,

- On the other hand, the interest was to study the behaviour of different con-
figurations of our method resulting from learning on previous INEX testbeds.
These configurations intend to be suited to the different tasks and quantisa-
tions defined in the INEX 2006 round.

3 Method principles

The IR method described in this paper is based on a vector space model. Document
and query representations are comparable to vectors. However, the correspondence
between documents and query is not estimated using a “usual” similarity measure. The
method is based on a generic scoring function that can be adapted to different retrieval
contexts. The current definition of the scoring function results from work on automatic
document categorization [1] and work on XML retrieval at previous INEX rounds
[5][6][13]. The scoring function is based on direct contribution of each query term
appearing in an XML element. The contribution can be modulated according to other
components of the query such as structural constraints. A principle of score aggrega-
tion completes the method with regard to the hierarchical structure of XML docu-
ments.

The scoring function is defined as a combination of three values. It can be globally
defined as follows:

),(),(),(),(EQhQtgEtfEQScore i
i

i ⋅

 ⋅= ∑

where

Q is the query

ti is a term representing the query Q

E is an XML element

80

),(Etf i This factor estimates the importance of the term ti in
the XML element E.

),(Etg i This factor estimates the importance of the term ti in
the query representation Q.

),(EQh This factor estimates the global presence of the
query Q in the XML element E.

On the one hand, the function is defined as an addition of contributions of the con-
cepts constituting a query. This principle allows giving relevance to elements dealing
about either only one concept or several concepts. The addition tends to promote
elements containing several concepts. However, depending on the different chosen
functions an element dealing strongly about one concept can be estimated higher than
an element dealing lightly about many concepts. On the other hand, the function esti-
mates globally the relevance of an element according to a query.

The function f that estimates the importance of a term in an XML element is based on
the number of occurrences of the term in the element moderated by the number of
XML elements of the corpus containing the term. Using this latter factor, the function
increases the contributions of terms appearing in few XML elements of the corpus.
This principle is similar to the tf.idf principle. A coefficient related to structural con-
straints on content term intends to increase or reduce term contributions according to
constraint matching.
The function g that estimates the importance of a term in the query representation is
based on the frequency of the term in the topic. The frequency is moderated by the
total number of occurrences of terms in the query. A coefficient related to term pre-
fixes intends to increase or reduce term contributions according to sign ‘+’ and ‘-’
associated to terms in the query.
The function h that estimates the global presence of a query in an XML element is
based on the proportion of terms common to the query and the element with respect to
the number of distinct query terms. A function power is used to clearly distinguish the
elements containing a lot of terms describing the query from the elements containing
few terms of the query.

So, the scoring function is defined as follows:

)
)(

),(
(

)(

),(),(

)(

),(),(
),(QNbT

EQNbT

ii

i i

ii
t QOcc

QtOccQtprf

tNbE

EtOccEtcc
EQScore ϕ⋅

 ⋅
⋅

⋅
= ∑

 where

ti is a term representing the query Q

E is an XML element

81

),(Etcc i Coefficient defined for the matching of constraint on content
(associated to the term ti) by the element E.

),(EtOcc i Number of occurrences of the term ti in the element E.

)(itNbE Number of elements containing the term ti

),(Qtprf i Coefficient defined for the prefix associated to the term ti in
the query Q.

),(QtOcc i Number of occurrences of the term ti in the query Q.

)(QOcc Total of occurrences of all the terms representing Q.

ϕ Query presence coefficient, positive real

NbT(Q,E) Number of terms of the query Q and that appear in the XML
element E.

NbT(Q) Number of distinct terms of the query Q.

The coefficients cc(ti,E) and prf(ti,Q) can be defined by functions. At the moment,

these coefficients are defined as follows:

cc(ti,E) if E does not match the structural constraint defined on ti
then cc(ti,E)=0.5
else cc(ti,E)=1.0

prf(ti,Q) if prefix is ‘+’
then prf(ti,Q)=5.0
else if prefix is ‘-‘
 then prf(ti,Q)=-5.0
 else prf(ti,Q)=1.0

This solution allows attaching variable importance to structural constraints on content
and prefixes. These definitions are resulting from experiments carried out on
INEX’2003 and INEX’2004 testbeds.

The hierarchical structure of XML is taken into account through score aggregation.
The hypothesis on which is based our method is that an element containing a compo-
nent selected as relevant is also relevant and more if it has several relevant compo-
nents. So, in our approach the score of an element is defined as the sum of its score
computed according to its textual content (if it exists) and the scores of its descendant
components that have a textual content (if they exist). The score of a component can
be modulated (for example, according to distance between the component and the
ascendant) when aggregating in the ascendant depending on the applied strategy. At
the moment, the aggregation is defined as follows:

82

∑ ⋅+=
l

lt
EEd

EEd

ta EQScoreEQScoreEQScore lr

l

),(),(),(),(

),(

α

 where

α (real) is the score aggregation coefficient

E, El and Er are XML elements

El is a descendant component of the E structural hierarchy (document)
such as El has textual content

Er is the root element of the structural hierarchy (document) of which E
is a descendant component

d(X,Y) is the distance between an element X and its descendant ele-
ment Y (for example in the path /article/bdy/sec/p[2], d(bdy, p[2]) = 2).

The coefficient α allows varying the influence of scores of descendant components in
the aggregated score of an XML element. Leaf components have no descendant thus
for such components:),(),(ETScoreETScore ta = .

Two types of structural constraints can be used to define INEX topics:

- constraints on content (e.g. about(.//p,'+XML +"information retrieval"),

- constraints on the granularity of target elements (e.g //article[….]).

As seen above, structural constraints on content are taken into account adding a

coefficient cc(ti,E) in the scoring function Scoret.

Structural constraints on the granularity of target elements are handled adding a coef-
ficient that modifies the aggregated score Scorea (equal to Scoret for leaf nodes). The
general principle is that if the XML element does not verify the constraint on target
granularity associated to the query, the score computed is reduced. The aggregated
score including granularity coefficient is therefore defined as follows:

⋅+⋅= ∑

l
lt

EEd

EEd

ta EQScoreEQScoreEQgcEQScore lr

l

),(),(),(),(),(

),(

α

 where

),(EQgc Coefficient defined for the matching of constraint on target
(associated to the query Q) by the element E.

At the moment, this coefficient is defined as follows:

if E does not match the structural constraint defined on Q
then gc(Q,E)=0.5
else gc(Q,E)=1.0

83

This definitions results from experiments carried out on INEX’2003 and
INEX’2004 testbeds.

This solution allows attaching variable importance to structural constraints on result
granularity. When γ=0.0 the structural constraints on result are strictly taken into ac-
count. When γ=1.0 the structural constraints on result are not taken into account.

The scoring function is completed by the notion of coverage. Coverage is a threshold
corresponding to the percentage minimum of query terms that have to appear in an
element to select it. It aims at ensure that only documents in which the query is repre-
sented enough will be selected for this topic. Coverage is combined to the scoring
function as follows:

If CT
QNbT

EQNbT <
)(

),(Then),(EQScore a = 0.0

where

CT Coverage threshold, real positive, 0.0≤CT≤1.0

),(EQNbT Number of terms common to the query Q and the element E

)(QNbT Number of distinct terms describing the query Q

Coverage is currently combined to Scorea. Otherwise, it can be applied to Scoret.and
then it has consequences on aggregated scores.

An additional process can be done to eliminate overlapping elements in the result.

This process consists in filtering the result and keeping according to a defined strategy
only one element when two overlapping elements are encountered. A strategy is for
example to keep the element with the highest score.

4 Experiments

At least two runs based on our XML retrieval method was submitted to INEX 2006
for each subtask one using the title part of queries and the other using the castitle part.
Depending on the subtask, an additional run using either title or castitle was submit-
ted.

4.1 Experiment setup

Resulting from experiments and learning when participating to INEX’2003 and
INEX’2004, all submitted runs shared the same values for the prefix coefficient
prf(ti,Q) and the coverage threshold CT (cf section 3). The coverage threshold was
fixed to 0.35 (i.e. more than a third of terms describing the topic must appear in the

84

text to keep the XML component). The values of prefix coefficient applied were fixed
to +5.0 for the prefix ‘+’, -5.0 for the prefix ‘-‘ and 1.0 for not prefixed terms.

For all the subtasks, CAS runs (i.e. having a label containing ‘CAS’) used the castitle
part of each topic definition to define queries instead of the title part used for other
runs. The coefficients taking into account structural constraints were fixed to 0.5 (i.e.
the contribution of a query term is divided by 2 when the element does not meet the
structural constraint) for all the subtasks. Structural constraints were handled so as
vague conditions.

Furthermore, depending on the subtask we studied three combinations of score ag-

gregation coefficient α and query presence coefficient ϕ (cf section 3) resulting from
learning and experiments on INEX’2005 testbeds. The following combinations were
tested:

- runs with labels containing ‘CH01x1’ used α=0.1 and ϕ=1. This combination
obtained good results on INEX’2005 testbeds for the subtask Thorough and
the quantisation strict. This combination includes weak score aggregation and
does not consider global query presence.

- runs with labels containing ‘CH06x50’ used α=0.6 and ϕ=50. This combina-
tion obtained good results on INEX’2005 testbeds for the subtask Thorough
and the quantisation generalised. This combination includes rather important
score aggregation and considers moderately global query presence.

- runs with labels containing ‘CH0x3000’ used α=0.0 and ϕ=3000. This com-
bination obtained good results on INEX’2005 testbeds for the subtask Fo-
cused. This combination does not include score aggregation and considers
strongly global query presence.

4.2 Partial ‘official’ results

The partial ‘official’ results currently available and corresponding to different con-
figurations of our method tested for the subtasks Thorough and Focused are detailed
in the following tables.

Table 1. Partial results for the subtask Thorough

Task Thorough

Metric: ep/gr Quantisation: generalised, overlap=off

Run V2006Cg35CH01x1tho V2006CASCH01x1tho

Maep 0.0147 0.0161

Rank 47/106 40/106

The first observation is that results are slightly over average. Since the configuration
results from experiments on strict quantisation with INEX’2005 testbeds, results for
strict quantisation are awaited to establish final conclusions. Another observation is

85

that structural conditions seem to improve the results since the run using castitle parts
of queries obtain higher average precision.

Table 2. Partial results for the subtask Focused

Task Focused

Metric: nxCG Quantisation: generalised

Run V2006CH0x3000foc V2006CASCH0x3000foc V2006CH06x50foc

overlap=on precision rank precision rank precision rank

nxCG@5 0.2899 43/85 0.2848 53/85 0.2630 61/85

nxCG@10 0.2472 42/85 0.2435 46/85 0.2198 62/85

nxCG@25 0.1905 43/85 0.1843 48/85 0.1759 52/85

nxCG@50 0.1558 36/85 0.1472 42/85 0.1471 43/85

overlap=off precision rank precision rank precision rank

nxCG@5 0.3151 41/85 0.3118 43/85 0.2666 63/85

nxCG@10 0.2841 35/85 0.2742 40/85 0.2270 62/85

nxCG@25 0.2255 34/85 0.2167 39/85 0.1826 54/85

nxCG@50 0.1801 28/85 0.1742 31/85 0.1466 47/85

The first observation is that results are average. Another observation is that treating
only elements with textual content without including score aggregation leads to better
results. To return leaf nodes seems to be better for Focused task than to return inter-
mediate nodes. Another observation is that structural conditions do not improve re-
sults which can be explain by the fact that only a restricted set of XML elements are
treated when score aggregation is not used.

5 CONCLUSIONS

Different changes have been introduced between the previous INEX’2005 round and
the current INEX’2006 round. The changes occured at different levels:

− The Wikipedia corpus has replaced the IEEE corpus introducing differences
on corpus size, document contents and document structures,

− New tasks have been defined notably the ‘Best in Context’ task that asks sys-
tems to return one best entry per relevant article,

− There is no separate CAS task. Runs using topic ‘titles’ and runs using topic
‘castitles’ have been merged for evaluation. Furthermore, it was possible to
make runs using other topic parts that title part or castitle part.

Participating to INEX this year had multiple objectives such as evaluating the impact
of framework changes on our method effectiveness and to study the behaviour of

86

different configurations of our method resulting from learning on previous INEX
testbeds.
The first partial ‘official’ results lead to mixed conclusions. Further results will give
more information to establish final conclusions and future works.

References

[1] Augé J., Englmeier K., Hubert G., Mothe J., Classification automatique de textes basée sur
des hiérarchies de concepts. Veille Stratégique Scientifique & Technologique
(VSST'2001), Barcelone, 2001, p. 291-300.

[2] Crouch C. J., Khanna S., Potnis P., Doddapaneni N., The Dynamic Retrieval of XML
ElementsAn Approach to Structured Retrieval Based on the Extended Vector Model, Ad-
vances in XML Information Retrieval, LNCS 3977, 4th International Workshop INEX,
2006, p. 268-281.

[3] Fuhr N., Großjohann K., XIRQL: An XML query language based on information retrieval
concepts. ACM Transactions on Information Systems (TOIS), vol. 22, Issue 2, 2004, p.
313-356.

[4] Geva S., GPX – Gardens Point XML IR at INEX 2005, Advances in XML Information
Retrieval, Advances in XML Information Retrieval, LNCS 3977, 4th International Work-
shop INEX, 2006, p. 240-253.

[5] Hubert G., XML Retrieval Based on Direct Contribution of Query Components, Advances
in XML Information Retrieval, LNCS 3977, 4th International Workshop INEX, 2006, p.
172-186.

[6] Hubert G., A voting method for XML retrieval. Advances in XML Information Retrieval,
3rd International Workshop INEX, LNCS 3493, 2005, p. 183-196.

[7] Larson R. R., Probabilistic Retrieval, Component Fusion and Blind Feedback for XML
Retrieval, LNCS 3977, 4th International Workshop INEX, 2006, p. 225-239.

[8] Mass Y., Mandelbrod M., Using the INEX Environment as a Test Bed for Various User
Models for XML Retrieval, Advances in XML Information Retrieval, LNCS 3977, 4th In-
ternational Workshop INEX, 2006, p. 187-195.

[9] Mihajlović V., Ramírez G., Westerveld T., Hiemstra D., Blok H. E., de Vries A. P., TIJAH
Scratches INEX 2005: Vague Element Selection, Image Search, Overlap, and Relevance
Feedback, Advances in XML Information Retrieval, LNCS 3977, 4th International Work-
shop INEX, 2006, p. 72-87.

[10] Ogilvie P., Callan J., Parameter Estimation for a Simple Hierarchical Generative Model for
XML Retrieval, Advances in XML Information Retrieval, LNCS 3977, 4th International
Workshop INEX, 2006, p. 211-224.

[11] Sigurbjörnsson B., Kamps J., de Rijke M., The Effect of Structured Queries and Selective
Indexing on XML Retrieval, Advances in XML Information Retrieval, LNCS 3977, 4th In-
ternational Workshop INEX, 2006, p. 104-118.

[12] Sauvagnat K., Hlaoua L., Boughanem M., XFIRM at INEX 2005: Ad-Hoc and Relevance
Feedback Tracks, Advances in XML Information Retrieval, LNCS 3977, 4th International
Workshop INEX, 2006, p. 88-103.

[13] Sauvagnat K., Hubert G., Boughanem M., Mothe J., IRIT at INEX 2003. 2nd INitiative for
the Evaluation of XML Retrieval, Dagstuhl, 2003, p. 142-148.

[14] Vittaut J.-N., Piwowarski B., Gallinari P., An Algebra for Structured Queries
in Bayesian Networks, Lecture Advances in XML Information Retrieval, LNCS 3493, 3rd
International Workshop INEX, 2004, p. 100-112.

87

The University of Amsterdam at INEX 2006

Jaap Kamps1,2, Marijn Koolen1, and Börkur Sigurbjörnsson2

1 Archives and Information Science, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. We describe the University of Amsterdam’s participation in
the INEX 2006 Adhoc Track. We participated in all four Adhoc Track
tasks, and report initial findings based on a single set of measure for all
four tasks. Our main findings are the following. First, a complete element
index outperforms a restricted index based on section-structure, albeit
the differences are small. Second, grouping elements per article does not
lead to performance degradation, but may improve scores. Third, all
restrictions of the “pure” element runs (by removing overlap, by grouping
elements per article, or by selecting a single element per article) lead to
some but only moderate loss of precision.

1 Introduction

In this paper we document the University of Amsterdam’s participation in the
INEX 2006 Adhoc Track. Our main aims for INEX 2006 were to investigate the
effectiveness of our XML retrieval approaches on a new collection, the Wikipedia
XML corpus [1], which has a different nature than the IEEE collection used in
INEX 2002–2005. What are the characteristics of the new Wikipedia collection,
and how do they affect the performance on our element retrieval system? We
want to know which approaches tranfer well to a new sort of collection, and
which approaches don’t and why.

The rest of the paper is organized as follows. First, Section 2 describes the
Wikipedia collection. Next, Section 3 documents the XML retrieval system used
in the experiment. Then, in Section 4, we detail the setup of the experiments.
The results of the experiments are reported in Section 5. Finally, in Section 6,
we discuss our findings and draw some initial conclusions.

2 Wikipedia collection

In previous years, the IEEE collection was used in INEX. This year sees the
introduction of a new collection, based on the English Wikipedia collection [2].
The collection has been converted from the wiki-syntax to an XML format [1].
Whereas the IEEE collection has somewhat over 12,000 documents, the Wikipedia
collection has more than 650,000 documents. To get some idea of the charac-
teristics of this new collection, we have gathered some statistics. Table 1 shows
a few basic collection statistics. There are over 50,000,000 elements using 1241

88

different tag names. However, of these, 779 tags occur only once, and only 120 of
them occur more than 10 times in the entire collection. On average, documents
have almost 80 elements, with an average depth of 4.82.

Table 1. Wikipedia collection statistics

Description Statistics

of articles 659,388
of elements 52,555,826
of unique tags 1241
Avg. # of elements per article 79.69
Average depth 4.82

Next, we gathered tag statistics like collection frequency, document frequency
and element length. Table 2 shows the 10 longest elements and their collec-
tion frequency. The length is the average number of words in the element. The
<article> element is the longest element of course, since it always encompasses
all other elements. However, after the <body> element, the other long elements
occur only rarely in the entire collection, and contain only a few hundred words.
Clearly, most of the elements are rather short. Even the average article length
is short, containing no more than 415 words.

Table 2. Longest elements in Wikipedia collection

Element Mean length Collection freq.

<article> 414.79 659,388
<body> 411.20 659,388
<noinclude> 380.83 14
<h5> 253.18 72
<td align> 249.20 4
<h4> 237.13 307
 198.20 163
<timeline> 186.49 48
<number> 168.72 27
<h3> 163.80 231

In table 3 the most frequent tag names are listed. Column 2 shows the average
document frequency of the tag name, column 3 shows the collection frequency.
There are many links to other Wiki pages (<collectionlink>s), and many
<unknownlink>s that are not really links (yet). Wiki pages have more than 4
paragraphs (indicated by <p> tags) and more than 2 sections on average.

As shown in table 4, the elements <article>, <conversionwarning>, <body>
and <name> occur in every single document. Almost all documents have links to

89

Table 3. Most frequent tags in Wikipedia collection

Tag name Document freq. Collection freq.

<collectionlink> 25.80 17,014,573
<item> 8.61 5,682,358
<unknownlink> 5.98 3,947,513
<cell> 5.71 3,770,196
<p> 4.17 2,752,171
<emph2> 4.12 2,721,840
<template> 3.68 2,427,099
<section> 2.44 1,609,725
<title> 2.41 1,592,215
<emph3> 2.24 1,480,877

other Wiki pages (99.4%), and more than 70% have text tagged as <unknownlink>
(indicating a topic that could have its own page). Together with the average fre-
quency of the <collectionlink>s, this indicates a very dense link structure.
Apart from that, the textual unit indicating elements <section> and <p> (para-
graph) occur in 69.6% and 82.1% of the documents respectively.

Table 4. Elements with the highest document frequency in Wikipedia collection

Tag name Document freq. %

<article> 659,388 100.0
<conversionwarning> 659,388 100.0
<body> 659,388 100.0
<name> 659,388 100.0
<collectionlink> 655,561 99.4
<emph3> 587,999 89.2
<p> 541,389 82.1
<unknownlink> 479,830 72.8
<title> 459,253 69.6
<section> 459,252 69.6

The main observation is that elements are small on average. One important
reason for this is the Wikipedia policy of splitting long articles into multiple new
pages.3 The idea is that encyclopedia entries should be focused. If the article
grows too long, it should be split into articles discussing the sub-topics. This is
3 As http://en.wikipedia.org/wiki/Wikipedia:Summary style reads: “The length

of a given Wikipedia entry tends to grow as people add information to it. This cannot
go on forever: very long entries would cause problems. So we must move information
out of entries periodically. This information should not be removed from Wikipedia:
that would defeat the purpose of the contributions. So we must create new entries
to hold the excised information.” (November 2006).

90

http://en.wikipedia.org/wiki/Wikipedia:Summary_style

a policy that closely resembles the main purpose of element retrieval: a relevant
results must be specific. The dense structure of the collection links should make
it easy to navigate to other relevant pages.

3 XML Retrieval System

3.1 Indexing

Our indexing approach is based on our earlier work [3,4,5]).

– Element index : Our main index contains all retrievable elements, where we
index all textual content of the element including the textual content of their
descendants. This results in the “traditional” overlapping element index in
the same way as we have done in the previous years [3].

– Section index : We built an index based on frequently retrieved elements.
Studying the distribution of retrieved elements, we found that the <article>,
<body>, <section> and <p> elements are retrieved far more often than other
elements. The only exceptions are the <collectionlink> elements. How-
ever, since collection links contain only a few terms at most, and say more
about the relevance of another page, we didn’t add them to the index.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Queries are processed similar to the documents,
we use either the CO query or the CAS query, and remove query operators (if
present) from the CO query and the about-functions in the CAS query.

3.2 Retrieval

For all our runs we used a multinomial language model [6]. We use the same
mixture model implementation as we used in earlier years [4]. We assume query
terms to be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters

91

λe and λd are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e|

, (3)

where |e| is the size of an element e. For a more thorough description of our
retrieval approach we refer to [4].

4 Experimental Setup

In this section, we detail the experiments and runs submitted to the INEX
2006 Adhoc track tasks. None of our official submissions used the three layered
mixture model, i.e., we use λd = 0 throughout.

4.1 Thorough

For the Thorough Task, we submitted two runs using the CO query (from the
topic’s <title> field) and two runs using the CAS query (from the topic’s
<castitle> field). We regard the Thorough Task as underlying all other tasks,
and all other runs are based on postprocessing them in various ways.

The two Thorough CO runs are:

thorough element lm Language model (λe = 0.15) on the element index.
thorough section lm Language model (λe = 0.15) on the section index.

Our two CAS query runs are also based on postprocessing the CO run based
on the element index. We extract all path-restrictions on the element of request
in the CAS query, and filter the results for elements conforming on all or some
of the location steps.

The two Thorough CAS query runs are:

thorough element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression.

thorough element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request.

4.2 Focused

For the Focused Task we submitted two runs using the CO query and two runs
using the CAS query. All our Focused Task submissions correspond to a Thor-
ough Task submission, and are postprocessed by a straightforward list-based
removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For ex-
ample, if the first result from an article is the article itself, we will not include
any further element from this article.

The resulting two Focused CO runs are:

92

focused element lm Language model (λe = 0.15) on the element index, with
list-based removal of ancestor or descendant elements.

focused section lm Language model (λe = 0.15) on the section index, with
list-based removal of ancestor or descendant elements.

The resulting two Focused CAS runs are:

focused element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression, and with
list-based removal of ancestor or descendant elements.

focused element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request, and with list-based removal of ancestor or descendant elements.

4.3 All in Context

For the All in Context Task, we only submitted runs using CO query. Here, we
base our runs on the Thorough Task runs using the section index. We cluster all
elements belonging to the same article together, and order the article clusters
either by the highest scoring element, or by the combined scores of all elements
belonging to the article.

The two All in Context CO runs are:

all section lm.highest Language model (λe = 0.15) on the section index,
clustered by article and ranked according to the highest scoring element in
an article, and with list-based removal of ancestor or descendant elements.

all section lm.sum Language model (λe = 0.15) on the section index, clus-
tered by article and ranked according to the sum of element scores in an
article, with list-based removal of ancestor or descendant elements.

4.4 Best in Context

Finally, for the Best in Context Task we submitted three runs, all based on
the CO query. We use, again, the runs made against the section index, and
postprocess them such that only a single result per article is kept in the result
file.

best section lm.highest score Language model (λe = 0.15) on the section
index, selecting only the highest scoring element per article.

best section lm.article Language model (λe = 0.15) on the section index,
selecting the article node of each element from an unseen article.

best section lm.first Language model (λe = 0.15) on the section index, se-
lecting only the first element (in reading order) that is retrieved per article.

93

5 Results

At the time of writing, only partial results are available. We opt to compare all
runs on equal grounds, focusing on two common measures that are available in
the EvalJ package: a mean-average-precision measure (MAep), and early pre-
cision measure (nxCG at rank 5, 10, 25, and 50). This allows us to measure
the effectiveness of various post-processing methods, such as overlap-removal or
clustering by article, in terms of their relative impact on precision and recall.
Before discussing the results for each of the Adhoc tasks, we first give some
detail about the topics and resulting relevance judgments.

5.1 Topics and Judgments

Assessments are available for 111 topics (numbered 289–298, 300–306, 308–369,
371–376, 378–388, 390–392, 395, 399–407, 409–411, and 413). There is a total
8,737 relevant passages for these 111 topics in 5,483 different articles. Table 5
shows some statistics of the relevant passages (i.e., the text highlighted as rel-
evant by the assessors). It is interesting to see that most relevant passages are

Table 5. Relevant passage statistics

Description Statistics

articles with relevance 5,483
relevant passages 8,737
avg. rel. pass. length 1,098
median rel. pass. length 56

very short. The lengths of the elements are measured in characters (text offset).
The length distribution is skewed: the difference between mean and median rel-
evant passage length is enormous. Apparently, most relevant passages contain
only a few words or a sentence, indicating that even though the average article
is rather short, there is still a lot of irrelevant text that can be filtered out.

Table 6 looks at the judgments from the vista point of elements containing
only relevant text. We see that there are many <collectionlink> elements that
contain relevant text. This is not very surprising, because the <collectionlink>
element is by far the most frequent element in the entire collection (see Table 3).
Other short elements, like <cell>, <emph2> and <unknownlink> are also found
often in relevant passages. The lengths mentioned are the average lengths of
the relevant elements of that type. Longer elements containing relevant text are
mostly <section> and <p> elements.

The shorter elements often contain only a few words, and often are only a
small part of the entire passage. However, there are a lot of <collectionlink>
elements that encompass an entire relevant passage. Table 7 shows the frequency

94

Table 6. Relevant element statistics

Tag name Frequency Avg. length

<collectionlink> 171,766 14
<item> 35,107 285
<cell> 29,711 17
<p> 29,199 470
<emph2> 28,260 22
<unknownlink> 24,893 17
<section> 20,667 2,434
<emph3> 11,867 16
<row> 10,148 57
<title> 9,082 25

Table 7. Elements encompassing entire relevant passages

Tag name Frequency Avg. length

<p> 2,813 509
<collectionlink> 1,592 16
<name> 886 21
<title> 715 21
<emph3> 699 19
<item> 532 140
<emph2> 216 60
<body> 209 5,227
<unknownlink> 202 18
<caption> 191 72

95

of elements that are the shortest element to encompass an entire relevant pas-
sage. Apparently, topic authors often consider a link to another page to be a
relevant passage. However, the <p> element now surfaces as the most frequent
shortest element to encompass an entire relevant passage. This gives support
to our Section index as a viable indexing strategy. The focus of this year’s rel-
evance metrics is in specificity, though, so these results might point us in the
wrong direction.

5.2 Thorough

We’ll now discuss the results for the four Adhoc tasks, starting with the Thor-
ough Task. The Thorough Task puts no restriction on XML elements to return.
Table 8 shows the results for the Thorough Task. We first discuss the top two

Table 8. Results for the Thorough Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

thorough element lm 0.4120 0.3789 0.3262 0.2790 0.0343
thorough section lm 0.3948 0.3721 0.2977 0.2503 0.0227
thorough element lm cas.joined 0.1872 0.1642 0.1410 0.1100 0.0116
thorough element lm cas.seperate 0.2124 0.1761 0.1511 0.1208 0.0129

runs using the keyword or CO query. We make a few observations: First, we see
that the index containing all XML elements in the collection is more effective on
all measures. Second, we see that difference with the section index (containing
only article, body, section, and paragraph nodes) is relatively small, especially in
terms of precision. This is in line with earlier results on the IEEE collection, and
shows the potential of the much smaller section index. We now zoom in on the
bottom two runs using the structured or CAS query. We see that the joined run
(using the element of request’s full path as a Boolean filter) performs less than
the separate run (filtering only for the tagname of the element of request). When
comparing the results for the CO and CAS queries, we see that the CO query
runs are more effective for both mean average precision, and for early precision.
While the loss of mean average precision can be expected, the structural hints
hold the potential to improve precision. We should note, however, that the CAS
processing was done naively, resulting in many topics with very few or no results
left.

5.3 Focused

For the Focused Task, none of the retrieved elements was allowed to contain
text that overlaps with another retrieved element. We evaluate runs here using
the same measures as the Thorough Task above, but since the elements judged
relevant in recall base may overlap, performance can never obtain perfect scores.

96

Table 9. Results for the Focused Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

focused element lm 0.3571 0.3245 0.2560 0.2116 0.0105
focused section lm 0.3386 0.2868 0.2212 0.1825 0.0080

focused element lm cas.joined 0.1522 0.1310 0.0975 0.0740 0.0033
focused element lm cas.seperate 0.1781 0.1418 0.1060 0.0789 0.0037

Table 9 shows the results for the Focused Task. Since we use the same post-
processing method—the list-based, top-down removal of elements overlapping
with earlier seen text—we see the same relative behavior as for the Thorough
Task runs above. The complete element index is still more effective than the
smaller section index. This signals that the effectiveness of the element index is
not due to the fact that it contains all potentially overlapping elements (which
could be exploited in theory). When comparing the Focused Task results to the
Thorough Task results, we note that, as expected, the scores are lower. There
is a moderate decline for the precision scores, but the recall (and mean average
precision) drops dramatically.

5.4 All in Context

For the All in Context Task, there is the further restriction that retrieved ele-
ments must be grouped per article (and still may not overlap). Again, we evaluate
runs here using the same measures as the Thorough Task above, so optimal per-
formance will result in still imperfect scores. Table 10 shows the results for the

Table 10. Results for the All in Context Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

all section lm.highest 0.3357 0.3082 0.2290 0.1889 0.0082
all section lm.sum 0.2454 0.2135 0.1804 0.1470 0.0059

All in Context Task. We see that for ranking the groups of elements from the
same article, the best scoring element is a more useful criterion than the sum
of all element scores. When comparing the All in Context Task results to the
Focused Task results, we note that the precision scores are in the same league.
In fact, considering that our All in Context runs are all based on the section
index, the clustering by article improves performance for all measures except for
the nxCG at rank 5.

97

5.5 Best in Context

For the Best in Context Task, we may only retrieve a single result per article.
For this task, a best-entry-point was obtained from the human judge during
the assessment procedure. At the time of writing, the measure corresponding
to this best-entry-point judgment is unavailable, and hence we evaluate the re-
trieved element in terms of perceived topical relevance. For ease of comparison,
we evaluate runs here using the same measures as the Thorough Task above, so
optimal performance will result in still grossly imperfect scores. Table 11 shows

Table 11. Results for the Best in Context Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

best section lm.highest score 0.3290 0.2796 0.2082 0.1670 0.0069
best section lm.article 0.2451 0.1983 0.1423 0.1106 0.0045
best section lm.first 0.3290 0.2796 0.2082 0.1670 0.0069

the results for the Best in Context Task. It is comforting to note that the ele-
ment selection strategies outperform the strategy that simply backs off to the
whole article. Our Best in Context runs where based on postprocessing the All
in Context run, result in the same performance for selecting the first or highest
scoring element. This may be due to the layered processing of the runs, where
the Thorough Task’s section index run is processed by removing overlap, then
clustered by article, and then, finally, we selecting our final element to retrieve.
When comparing the Best in Context Task results to the All in Context Task
results, we note that there is only a moderate loss of precision for the Best in
Context Task.

The main aim of the Best in Context task is to investigate how the chosen
best entry point related to the perceived relevance in the article. There is obvious
value in comparing the results above to the results based on the selected best
entry point.

6 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2006 Adhoc Track. We participated in all four Adhoc Track tasks. At the time
of writing, only partial result are available. Hence we decide on a single set
of measures for all four Tasks, focusing on both precision and mean average
precision. This will allow for straightforward comparison between the tasks, but
may not reflect best each individual Task. In particular, we evaluate the Best in
Context Task not in terms of the best entry point as provided in the assessments,
but in terms of the perceived relevance.

Our main findings so far are the following. First, for the Thorough Task, we
see that a complete element index was more effective than a restricted index

98

based on the sectioning structure, although the difference is not large. We also
see that the keyword or CO query was more effective than the structured or
CAS query. Second, for the Focused Task, we observe a very similar pattern
as for the Thorough Task. This is a reassuring result, because it signals that
the superior performance of the element index is not due to the fact that it
contains many overlapping elements. Third, for the All in Context Task, we
find that the clustering per article is in fact improving the performance when
compared to the corresponding overlap-free Focused Task runs. Fourth, for the
Best in Context Task, we see that element selection outperforms backing off
to the whole article, and obtain—perhaps suprisingly—still agreeable precision
scores in terms of perceived relevance.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO, grants # 612.066.302, 612.066.513, 639.072.601, and 640.001.501),
and by the E.U.’s 6th FP for RTD (project MultiMATCH contract IST-033104).

References

1. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40 (2006)
64–69

2. Wikipedia: The free encyclopedia (2006) http://en.wikipedia.org/.
3. Sigurbjörnsson, B., Kamps, J., de Rijke, M.: An Element-Based Approch to XML

Retrieval. In: INEX 2003 Workshop Proceedings. (2004) 19–26
4. Sigurbjörnsson, B., Kamps, J., de Rijke, M.: Mixture models, overlap, and structural

hints in XML element retreival. In: Advances in XML Information Retrieval: INEX
2004. Volume 3493 of LNCS 3493. (2005) 196–210

5. Sigurbjörnsson, B., Kamps, J.: The effect of structured queries and selective index-
ing on XML retrieval. In: Advances in XML Information Retrieval and Evaluation:
INEX 2005. Volume 3977 of LNCS. (2006) 104–118

6. Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente (2001)

99

http://en.wikipedia.org/

Using Language Models and the
HITS Algorithm for XML Retrieval?

Benny Kimelfeld, Eitan Kovacs, Yehoshua Sagiv, and Dan Yahav

The Selim and Rachel Benin School of Engineering and Computer Science
The Hebrew University of Jerusalem

Edmond J. Safra Campus, Jerusalem 91904, Israel
{bennyk,koveitan,sagiv,dyahav}@cs.huji.ac.il

Our goal for INEX 2006 was to assess a variety of methods for XML and Web
retrieval. The nature of the Wikipedia collection, which contains XML elements
and links (XPointer and XLink), led us to believe that combining methods of
XML and Web retrieval could be a promising approach. Thus, we have devel-
oped an information-retrieval system that is extensible, in the sense that it is
composed of several modules that were designed so that each one can be easily
reimplemented in order to test different retrieval methods. We first conducted
thorough experiments on the INEX 2005 collection, using the automatic assess-
ment tool, thereby gaining knowledge on which method performed best on a
specific ad-hoc sub-task (e.g., CO Thorough, CO Focused).

We have experimented with three different methods for ranking XML ele-
ments. All our methods are based on a linear interpolation of three language
models [1]: corpus, document and element. We also use element-length cut-off
and keyword proximity. In addition, we apply the HITS algorithm [2] (using the
JUNG library [3]) in combination with the language-modeling approach.

Our general approach starts by ranking documents, according to some crite-
ria, and then applying each of the three methods in order to rank elements of
the documents that are deemed relevant. One criterion prefers documents that
have more keywords from the query. Another one chooses documents that are
highly ranked by the HITS algorithm.

We apply the structural constraints by considering the support keywords
with a reduced weight. In our results for INEX 2006, there is only a minor
difference between the CO and the COS tasks. Overall, the combination of the
HITS algorithm and the language-model approach gives the best results.

References

1. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In: SIGIR, ACM (1998) 275–281

2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: SODA,
ACM (1998) 668–677

3. The JUNG Framework Development Team: JUNG java universal network/graph
framework. (2006) http://jung.sourceforge.net.

? This research was supported by The Israel Science Foundation (Grant 893/05).

100

CSIRO’s participation in INEX 2006

Alexander Krumpholz and David Hawking

CSIRO ICT Centre, Canberra, Australia
{Alexander.Krumpholz, David.Hawking}@csiro.au

Extended Abstract

In this year’s participation of INEX, CSIRO participated in the Ad-hoc Track,
contributing to three of the four given tasks, namely the Thorough Task, the
Focussed Task and the Best in Context Task.

In order to use CSIRO’s plain text search engine PADRE we had to prepro-
cess the collection in a similar manner to the approach taken by our group in
2002. We split the documents in subdocuments according to the elements that
we need to retrieve and indexed the files with PADRE.

In a first step we extracted query elements from the INEX topics. Then
the query processor generated PADRE queries and post-processed the results
according to specifications for each run.

The following runs have been submitted:

CSIRO-CAS1-A Using the Content-And-Structure-Title as a query to PADRE,
using the results as they are retrieved.

CSIRO-CAS2-A Using the Content-And-Structure-Title as a query to PADRE,
restricting results to match the query.

CSIRO-CO1-A Using the Content-Only-Title as a query to PADRE, using
the results as they are retrieved.

CSIRO-CO1-B Using the Content-Only-Title as a query to PADRE, but sup-
pressing overlapping results.

CSIRO-CO1-D Using the Content-Only-Title as a query to PADRE, restrict-
ing results to articles.

CSIRO-CO2-A Using the Content-And-Structure-Title without structural ref-
erences as a query to PADRE, using the results as they are retrieved.

CSIRO-CO2-B Using the Content-And-Structure-Title without structural ref-
erences as a query to PADRE, but suppressing overlapping results.

CSIRO-CO2-D Using the Content-And-Structure-Title without structural ref-
erences as a query to PADRE, restricting results to articles.

101

EXTIRP: baseline retrieval from Wikipedia

Miro Lehtonen1 and Antoine Doucet2

1 Department of Computer Science
P. O. Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

firstname.lastname@cs.helsinki.fi
2 IRISA-INRIA

Campus de Beaulieu
F-35042 Rennes Cedex

France
firstname.lastname@irisa.fr

Abstract. The Wikipedia XML documents are considered an interest-
ing challenge to any XML retrieval system that is capable of indexing and
retrieving XML without prior knowledge of the structure. Although the
structure of the Wikipedia XML documents is highly irregular and thus
unpredictable, EXTIRP manages to handle all the well-formed XML doc-
uments without problems. Whether the high flexibility of EXTIRP also
implies high performance concerning the quality of IR has so far been a
question without definite answers. The initial results do not confirm any
positive answers, but instead, they tempt us to define some requirements
for the XML documents that EXTIRP is expected to index. The most
interesting question stemming from our results is about the line between
high-quality XML markup aids accurate IR and noisy “XML spam” that
misleads flexible XML search engines.

1 Introduction

The experimental XML retrieval system of University of Helsinki — EXTIRP
— needed only slight modification when adapted to indexing and retrieving in-
formation from the Wikipedia document collection. Application of the existing
methods to a new set of documents was especially interesting: EXTIRP has pre-
viously been tested on the IEEE article collection only, although it can handle
documents of arbitrary document types. The previous test results could be ex-
plained by alleged fine-tuning to a single document collection because we were
not able not show how EXTIRP worked on other collections. Therefore, the
Wikipedia documents added another valuable dimension to the testing history
of EXTIRP.

Partly because of our low resources and partly because of our desire to keep
our system from 2005 pristine, we did not analyse the Wiki documents before
they were indexed and queried for the official submissions. There certainly was no
fine-tuning one way or another. We also have left out many of the characteristic

102

features that have been part of EXTIRP during its short history. These features
include query expansion, intra-document reference analysis, as well as weighting
schemes for titles and inline elements. The remaining system has come close to
a baseline retrieval model based on the vector space model and cosine similarity.

2 Background

The history and basic structure of EXTIRP.

3 Selective indexing

Examples of XML that was left out, and examples that were included.
Demonstration of how our methods work and how the Wikipedia XML doc-

uments challenge them.
Looking at our observations raises an interesting question: What is the valid-

ity of this evaluation where the test documents can only be used in the evaluation
because the structure is completely useless elsewhere?

4 Related work

5 Results

The results from INEX 2005 showed that the official evaluation metrics [1] do
not favour systems like EXTIRP because there is no reward for returning “too
small” answers. The 2005 version could not adjust the granularity of the answers
according to the query, but the granularity came directly from the indexed docu-
ment fragments [2]. The 2006 version of EXTIRP comes with the same drawback
even though some “near misses” are rewarded.

6 Conclusion

As a simple implementation of an XML retrieval system, the 2006 version of
EXTIRP serves as a baseline that other more advanced implementations can be
compared with. However, according to the official evaluation metric (XCG), the
performance of this baseline is so poor that other metrics with better results are
necessary for a meaningful comparison.

References

1. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Measures. [3] 16–29
2. Lehtonen, M.: When a few highly relevant answers are enough. [3] 296–305
3. Fuhr, N., Lalmas, M., Malik, S., Kazai, G., eds.: Advances in XML Information

Retrieval and Evaluation, 4th International Workshop of the Initiative for the Eval-
uation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, November 2005,
Revised Selected Papers. In Fuhr, N., Lalmas, M., Malik, S., Kazai, G., eds.: INEX.
Volume 3977 of Lecture Notes in Computer Science., Springer (2006)

103

CISR at INEX 2006

Wei Lu1, Stephen Robertson2.3, Andrew Macfarlane3

1 Center for Studies of Information Resources, School of Information Management
Wuhan University, China and City University

sa713@soi.city.ac.uk
2 Microsoft Research, Cambridge, U.K

ser@microsoft.com
3 Centre for Interactive Systems Research, Department of Information Science

City University London
andym@soi.city.ac.uk

Abstract. In this paper, we describe the Centre for Interactive Systems Re-
search’s participation in the INEX 2006 adhoc track. Rather than using field-
weighted BM25 model in 2005, we revert back to using the traditional BM25
weighting function. Our main research aims in this year is to investigate the ef-
fects of document filtering by result record cut-off, element filtering by length
cut-off and the effects of using phrases. The initial results show the latter two
methods did not do well, while the first one did well on FOCUSED TASK and
RELEVANT IN CONTEXT TASK. We also derived a novel method for BEST
IN CONTEXT TASK which requires more investigation.

1. Introduction

This is the second year that the CISR has participated in INEX. In INEX 2005, we
used a field-weighted BM25 model and submitted runs for two adhoc CO tasks [1].
Our results show the method is promising. Subsequent to this, we investigated XML
retrievable units and element inheritance in [2] and the average element length in [3].
This year, rather than exploiting the field-weighted method further, our work mainly
focuses on investigating the effects of document filtering, element filtering and using
phrases.

In traditional text retrieval system, a document is usually treated as independent
unit. But for XML element retrieval, elements in the same document are usually se-
mantically relevant and can be independent units themselves, e.g., article title, ab-
stract,and section title to section text in IEEE’s data collection. This raises an issue of
how context elements affect the effectiveness of XML element retrieval. Some work
has been done in this area. Lu et al [1] and Robertson et al [2] used a field-weighted
method to exploit the inheritance from context elements; Abolhassani et al [4], Geva
et al [5] and Ogilive et al [6] used various methods to compute the parent element’s
weight by merging its sub-element’s weight. Both of these two methods consider the

104

element weight inheritance from context elements but without evidence from the
whole document. Sigurbjornsson et al [7] and Mass et al [8] investigated document
weight’ s contribution to element retrieval by using a interpolation method of merging
the document weight into element weight. The results show this method is beneficial
and has yielded good results at INEX 2004 and INEX 2005.

In this paper, we use a different method to exploiting the document affects to ele-
ment retrieval. That is, we divided element retrieval into two phases: firstly, we con-
duct document level retrieval and set a cut-off for the retrieved results; secondly, we
use the filtered results to further execute element level XML retrieval. Our aim is to
investigate whether using top weighted documents can produce better results than the
method we have utilized previously.

In order to avoid the too-small element problem, we use two methods. We restrict
our set of retrievable units to article, body, section and paragraph and we set a cut-off
for element length to abandon those elements which are shorter than the cut-off value.
We also use phrases instead of single words to see if it could improve retrieval effec-
tiveness.

In section 2, we simply introduce the BM25 model used in our experiment. In sec-
tion 3, we discuss our submitted runs. Section 3 further illustrates the experiment of
this method on INEX 06 and Evaluation results are reported in section 4. A conclusion
and further work to be undertaken are given at the end.

2. BM25 model

Different to that in 2005, we use BM25 model only. For ad-hoc retrieval, and ignor-
ing any repetition of terms in the query, BM25 can be simplified to:

where C denotes the document collection, tf j is the term frequency of the jth term in
document d, df j is the document frequency of term j, dl is the document length, avdl is
the average document length across the collection, and 1k and b are tuning parameters.

Formula (1) uses a logarithmic function to compute term’ s collection weight. For
frequently occurring terms, this function will produce negative weight values. To
avoid this, we used an alternative weight function (command “w fn=3” in Okapi bss
system) instead of the logarithmic function.

(1)
5.0

5.0
log

))1((

)1(
),(

1

1

+
+−

++−

+
=

j

j

j

j
j df

dfN

tf
avdl

dl
bbk

tfk
Cdwf

105

3. Description of the Experiments

Within the ad-hoc XML retrieval task there are four sub-tasks: THOROUGH
TASK, FOCUSED TASK, RELEVANT IN CONTEXT TASK and BEST IN
CONTEXT TASK. For each sub-task, we submitted 3 or 4 runs only for CO queries
but not for CAS queries. The details of these experiments are as follows:

3.1 THOROUGH TASK

We submitted 3 runs for THOROUGH TASK. They are THOR-BM25-nobody,
THOR-BM25-nobody-cutoff400 and THOR-BM25-400-1500-phrase:

• THOR-BM25-nobody directly uses BM25 to compute the element weight
score;

• THOR-BM25-nobody-cutoff400 is much the same as THOR-BM25-nobody
except an element length cut-off 400 is set, which filters out elements shorter
than 400 characters;

• THOR-BM25-400-1500-phrase uses the same element length cut-off, and it
also set document result cut-off (1500) and uses phrases instead of single
words.

3.2 FOCUSED TASK

The 3 submitted runs for FOCUSED TASK are as follows:
• FOCU-BM25-cutoff400 uses 400 characters length as element length cut-off;
• FOCU-BM25-cutoff400-filter1500 uses the same element length cut-off and

also uses document result cut-off (1500);
• FOCU-BM25-cutoff400-filter1500-phrase is similar to the above one except

using phrases rather than single terms.

3.3 RELEVANT IN CONTEXT TASK

For this task, We submitted runs All-BM25-cutoff400, All-BM25-cutoff400-
filter1500 and All-BM25-cutoff400-filter1500-phrase. These runs use the same condi-
tions as the ones for FOCUSED TASK. The difference is that the results in the runs
are grouped by articles and without overlap elements.

3.4 BEST IN CONTEXT TASK

BEST IN CONTEXT TASK is a new ad-hoc task which aims at locating the best
entry point of XML retrieval. We used two methods for this task and submitted 4 runs.
In the first method, we just take the element with the highest weight score (best-match

106

element) in each document as the best entry point. The 2 submitted runs BEST-BM25-
cutoff400 and BEST-BM25-filter1500 used this method.

In the second method, we proposed novel way of selecting the best entry point. The
distribution of element weight scores in the document is considered. Our basic idea is
that, given an element, if more than one of its sub-elements has a good score, then this
element should be chosen as the candidate best entry point rather than using its sub-
element as the candidate best entry point. A problem for this particular method is how
to determine a good score. In implementation, we set half the score of the best-match
element in each document as the cut-off for determining a good score and use a bot-
tom up method for selecting the best entry point. For each document, we firstly find
the best-match element in the document. Then we consider all other elements which
do not overlap with this one. If any of these elements scores higher than half the score
of the best-match element, then it should be included in the scope implied by the entry
point. That is, we move the entry point up to the start of a higher-level element, such
that the higher-level element includes all the high-scoring elements.

For example, in Fig. 1, the best-match element is E and the best-match element
weight score is 2.11, so the cut-off value is 1.055. Using this method, we get the best
entry point B.

Fig.1 XML element tree with element weight score

In INEX 2006, the 2 submitted runs BEST-BM25-400-1500-level-p and BEST-
BM25-Level-filter1500 used this method.

4. Evaluation

The evaluation results of our runs are shown in Table 1, Table 2, Table 3 and Table
4. From the table 1, we can see that the run using the basic BM25 model does best,
and in table 2 and 3, the runs using element length cut-off do best (They also rank at
the top of all INEX 2006’ s corresponding submitted runs), while the runs using docu-
ment filtering and phrases does not do well. Table 4 shows the results of our runs for

107

locating document’ s best entry point. Although the run BEST-BM25-cutoff400 does
best among the 4 runs, we can see that the 2 runs BEST-BM25-400-1500-level-p and
BEST-BM25-Level-filter1500 using the derived novel method do better than the run
BEST-BM25-filter1500. These 3 runs use the same document result set for locating
the best entry point. This may suggest us for more experiment on this method.

Table 1: Evaluation results for THOROUGH Task

Runs Metric: ep/gr

THOR-BM25-nobody 0.0228

THOR-BM25-nobody-cutoff400 0.0215

THOR-BM25-400-1500-phrase 0.0118

Table 2: Evaluation results for FOCUSED Task

Metric: nxCG
Runs

5 10 25 50

FOCU-BM25-cutoff400 0.3961 0.3428 0.2638 0.2001

FOCU-BM25-cutoff400-
filter1500

0.3054 0.2557 0.1873 0.1335

FOCU-BM25-cutoff400-
filter1500-phrase

0.2849 0.2452 0.1836 0.1332

Table 3: Evaluation results for RELEVANT IN CONTEXT Task

Metric: nxCG
Runs

5 10 25 50

All-BM25-cutoff400 0.4176 0.3629 0.2783 0.2126

All-BM25-cutoff400-
filter1500

0.3216 0.2710 0.2018 0.1448

All-BM25-cutoff400-
filter1500-phrase

0.3048 0.2650 0.1994 0.1398

108

Table 4: Evaluation results for BEST IN CONTEXT Task

Metric: BEPD

A=0.01 A=0.1 A=1 A=10 A=100

Metric: EPRUM-BEP-Exh-BEPDistance
Runs

A=0.01 A=0.1 A=1 A=10 A=100

0.0860 0.1311 0.1984 0.3175 0.4532
%(67�%0���FXWRII���

0.0221 0.0435 0.0760 0.1431 0.2349

0.0655 0.1071 0.1706 0.2621 0.3441
BEST-BM25-filter1500

0.0139 0.0311 0.0547 0.0956 0.1384

0.0664 0.1071 0.1710 0.2626 0.3429 BEST-BM25-400-1500-
level-p 0.0147 0.0319 0.0567 0.0989 0.1420

0.0610 0.1087 0.1749 0.2632 0.3413 BEST-BM25-Level-
filter1500 0.0153 0.0367 0.0629 0.1014 0.1395

5 Conclusion

Rather than using field-weighted BM25 model in 2005, we reverted back to using
the basic BM25 model. We exploited the effects of element filtering by length cut-off,
document filtering by result record cut-off and the effects of using phrases. The results
show the latter two methods did not do well, while the first one did very well on
FOCUSED TASK and RELEVANT IN CONTEXT TASK and for THOROUGH
TASK the effectiveness is not quite obvious. We also utilized a novel method for
BEST IN CONTEXT TASK. However we did not consider the number of sub-
elements and the adjacency of the relevant elements. These issues need to be investi-
gated further.

109

Acknowledgements

This work is supported in part by National Social Science Foundation of China
06CTQ006.

References

[1] W. Lu, S. Robertson, A. Macfarlane. Field-Weighted XML Retrieval Based on BM25.
Proceedings of INEX 2005. LNCS. 2006 126-137

[2] S. Robertson, W. Lu, A. Macfarlane. XML-structured documents: retrievable units and
inheritance. FQAS 2006. Springer LNCS. 2006 121-132

[3] W. Lu, S. Robertson, A. Macfarlane. Investigating Average Element Length for XML Re-
trieval by Using BM25. (submitted to review)

[4] M. Abolhassani, N. Fuhr, S. Malik. HyREX at INEX 2003. Proceedings of the Second
Workshop of the Initiative for The Evaluation of XML Retrieval (INEX), 15-17 December
2003, Schloss Dagstuhl, Germany.

[5] S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004. INEX 2004,
Lecture Notes in Computer Science, Springer-Verlag GmbH Volume 3493 / 2005.

[6] P. Ogilvie, J. Callan. Hierarchical Language Models for XML Component Retrieval. INEX
2004, Lecture Notes in Computer Science, Springer-Verlag GmbH Volume 3493 / 2005.

[7] B. Sigurbjornsson, J. Kamps, M. Rijke, An element based approach to XML Retrieval,
Proceedings of the Second Workshop of the Initiative for The Evaluation of XML Retrieval
(INEX), 15-17 December 2003, Schloss Dagstuhl, Germany.

[8] Y. Mass, M. Mandelbrod, Component Ranking and Automatic Query Refinement for XML
Retrieval, INEX 2004, Lecture Notes in Computer Science, Springer-Verlag GmbH Volume
3493 / 2005.

110

A scalable XML component ranking algorithm

Yosi Mass

IBM Haifa Research Lab
Haifa 31905, Israel

yosimass@il.ibm.com

Abstract. In previous INEX years we presented an XML component ranking
algorithm that was based on separation of elements to different indices. This
worked fine for the IEEE collection which has a small number of potential
component types that can be returned such as sections and paragraphs. How-
ever, such an assumption doesn’t scale to this year Wikipedia collection where
there is a large set of potential component types that can be returned. We show
a new version of the Component ranking algorithm that does not assume any
knowledge on the set of component types. We then show how we exploited the
connectivity of the Wikipedia collection to use Page Rank and Anchor Text in
the component ranking algorithm.

1 Introduction

The challenge in XML retrieval is to return the most relevant components that sat-
isfy the user needs. Of most interest is the class of CO (Content Only) queries where
the user doesn’t know anything about the collection structure and issue her query in
free text. The search engine then exploits the XML structure to return the most rele-
vant XML components that satisfy the user needs.

The main challenge in component ranking is how to adapt ranking methods from

classical IR [3] that rank full documents to rank components inside a document. The
main problem is that classical IR methods work on statistics such as term frequency
and document frequency at the document level. This does not perform well at the
component level due to component nesting in XML as explained in [4,5,6]

In previous INEX workshops we described a component ranking algorithm [4,5,6]

that solved the component nesting problem by running each query against different
indices where each index contains elements of the same type. The idea is to build
different indices for the most informative component types where each index contains
elements of the same type. This worked fine for the IEEE collection where the com-
ponents we choose were {article, abs, bdy, sec, ss1, ss2 and p+ ip1}. This leaves us
with 7 indices which is a manageable solution. However in this year Wikipedia collec-
tion we can not pre identify such small number of the most informative collection as
there are at least hundreds of such potential component types.

111

In this paper we describe a modified version of the component ranking algorithm
that does not assume any set of known component types, but still uses the same idea of
a small number of separate indices with no nested elements. We further show how we
exploited the rich connectivity of the Wikipedia collection to improve component
ranking by applying PageRank and anchor text algorithms.

The rest of the paper is organized as follows: In section 2 we describe the modified

component ranking algorithm and in section 3 we describe the addition of PageRank
and Anchor Text algorithms. In section 4 we describe our runs and results in the adhoc
track. We conclude in section 5 with summary and some conclusions.

2 Component ranking (indexing) algorithm

The basic idea in the Component ranking algorithm[4,5,6] is to build different indi-
ces for the most informative component types where each index contains elements of
the same type. The indices we used for the IEEE collection in previous years where
{article, abs, bdy, sec, ss1, ss2 and p+ ip1}.

The component ranking algorithm is described in Fig 1 below. We give here a short
summary while full details can be found in [4,5,6]. Given a query Q, we run the query
in parallel on each index (step 1) and then optionally apply an Automatic Query Re-
finement (AQR) algorithm such as LARefinement[2] or similar (step 2) on each result
set. Then in step 3, the scores of elements in each result set are normalized to
score(Q,Q) which as described in details in [6], normalizes scores from the different
indices to the same range so that they can be compared. In step 4 we apply a document
pivot scaling where scores of elements from each index are scaled by the score of their
parent article. Finally all the results sets are merged into a single result set of all ele-
ment types.

Fig. 1. Component ranking algorithm

The above algorithm requires some prior knowledge on the collection such as the

decision on which element types to index in the separate indices. This doesn’t work

For each index i

1. Compute the result set Ri of running Q on index i

2. Apply AQR algorithm on Ri

3. Normalize scores in Ri to [0,1] by normalizing to score(Q,Q)

4. Scale each score by its containing article score from R0

Merge all Ri's to a single result set R composed of all components sorted
by their score

112

for heterogeneous collection that may have different element types. Moreover even for
the Wikipedia collection it doesn’t work since a simple analysis of the collection
shows that there can be hundreds of possible element types that can be returned. Table
1 below shows distribution of element types by their size. The table shows the top 20
element types sorted by their max direct size in tokens. A direct size of an element is
the content directly under it and a total size of an element is the sum of all elements in
the tree below the element. All those top 20 elements and much more are potential to
be returned so the method of selecting a small number (e.g. 7) of the most informative
elements does not scale for such collections.

Table 1. Distribution by element type size

We still want to use the component ranking algorithm so we use a different ap-

proach for creating the separate indices. Going back to the roots of the component
ranking algorithm, the motivation for creating the separate indices was two fold: first
to solve the problem of nested elements and second to compare elements of same
nature. We describe below a “Component indexing algorithm” for creating a small
number of indices for any given collection and we show that it satisfies the above two
objectives. The indexing algorithm gets two parameters -

1. minCompSize – the minimum component size (in tokens) to index from each

document
2. numIndices - the number of indices to create.

The indexing algorithm parses (using XML SAX parser) each document in the col-
lection and finds all minimal elements that are larger than minCompSize. A minimal
element is either a leaf element whose size is larger than minCompSize or the deepest

113

element in a path whose direct size is larger than minCompSize and it has no descen-
dant with a direct size larger than minCompSize.

We mark the indices with Index0…Indexn-1 where n = numIndices. For each such

minimal element we extract all its ancestors and if its depth is less than the number of
indices then each level are indexed in a separate index. For example assume numIndi-
ces = 7 then for example the minimal element /article[1]/bdy[1]/p[1] will be indexed
as follows:

Index 0: /article[1]
Index 1: /article[1]/bdy[1]
Index 2: /article[1]/bdy[1]/p[1]

If the depth of a minimal element is greater than the number of indices then we take

the first elements in the path into the first indices and the last elements in the path into
the last indices skipping some elements in between. For example

/article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]/td[2]

which has depth 10 will be split into the 7 indices as follows:

index 0 : /article[1]
index 1 : /article[1]/body[1]
index 2 : /article[1]/body[1]/section[7]
index 3: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]
index 4: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]
index 5: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]
index 6: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]/td[2]

If a document does not have any minimal element namely it has not element whose
direct size greater than numIndices then we index the all document (e.g. /article[1])
into index0.

So far we showed how to split a single path into the separate indices. However a
document may have several minimal elements that may have common ancestors so
while building higher level indices we make sure that elements do not repeat. For
example the following minimal set of elements –

/article[1]/body[1]/p[1],
/article[1]/body[1]/section[1]/p[1],
/article[1]/body[1]/section[1]/p[2],
/article[1]/body[1]/section[2]/section[1]/p[1],
/article[1]/body[1]/section[2]/section[1]/p[2],
/article[1]/body[1]/section[2]/section[4]/p[2]
/article[1]/body[1]/p[5],

are split to indices as follows:

114

Index 0: /article[1]]

Index 1: /article[1]/body[1]]

Index 2: /article[1]/body[1]/p[1],
 /article[1]/body[1]/section[1],
 /article[1]/body[1]/section[2],
 /article[1]/body[1]/p[5],

Index 3: /article[1]/body[1]/section[1]/p[1],
 /article[1]/body[1]/section[1]/p[2],
 /article[1]/body[1]/section[2]/section[1],
 /article[1]/body[1]/section[2]/section[4]]

Index 4: /article[1]/body[1]/section[2]/section[1]/p[1],
 /article[1]/body[1]/section[2]/section[1]/p[2],
 /article[1]/body[1]/section[2]/section[4]/p[2]

It’s easy to verify that this separation to indices satisfies the first requirements that
elements in an index are not nested. The second requirement of having in each index
elements of same nature is not very intuitive. It does exist in higher level indices for
example in Index0 we always index the whole document. Its true that in the last index
due to the cutoff of long depths, some elements can be from dept n-1 but some may be
of level m > n-1 so we need more investigation if a different separation to indices is
more appropriate.

3 PageRank and AnchorText

The Wikipedia collection is highly connected through internal <collectionlink> links.
The number of incoming such links into a document is called the document’s PageR-
ank. A document with a higher PageRank is deemed to be more relevant for a topic
than a similar document with a lower PageRank. Each such link has further a href
attribute which we call AnchorText. The AnchorText is actually the way other pages
describe the pointed page so it can improve ranking of the pointed document.

In Wikipedia the <collectionlink> that generates the PageRank and AnchorText is
pointing to a full document and not to its elements. Therefore in our indexing schema
we infer the same document’s PageRank and AnchorText to all elements of the docu-
ment.

115

AnchorText terms are then added to the pointed document text. They can be
weighted differently then regular document terms and this is something we need to
explore in future work. Finally the element score is a weighted sum of its calculated
score and its PageRank. In next section we describe different PageRank weights we
used in our runs.

4 Runs and results

We describe our submissions and results for the CO & COS thorough and BestInCon-
text runs.

Thorough runs

In all runs we ignored phrases (namely phrase terms were treated as simple terms) and
we treat “+” terms as regular terms. We did respect “-“terms namely we never return a
result which has a “-“term.

For all runs we picked minCompSize=20 and numIndices=7 and we added the An-
chorText to the pointed documents with same weight as regular terms. We tried com-
binations of various PageRank weights with and without the “ontopic_keywords” part
of the topic. We submitted 3 CO runs and 3 COS runs. For the COS runs we translated
the topics to XML Fragments[1] and applied the component ranking algorithm as
described in [6]. The results of our 3 CO runs (Table 2) using the Metric:ep-gr, Quan-
tization: gen were superior to the COS runs. This strengthen our findings from last
year that structural hints do not seem to contribute to the results.

Rank Run id MAep

8 PR=0.1, with keywords 0.0345

11 PR=0.1 0.0326

12 No PR 0.0324

Table 2. CO results for the thorough run

Comparing the 3 CO runs it seems that using PageRank with weight 0.1 (2nd run)

did not improve our MAep over no PageRank (3rd run). The ontopic_keywords (1st
run) did improve a bit (from 0.0326 to 0.0345) but we are more interested in the runs
without the keywords.

116

BestInContext runs

The BestInContext run is based on a filtering step over results of a thorough run.
We run a thorough run and then we go over the returned ranked list of elements and
for each element if it is the first element from its document, we pick it as the best entry
point for that document and remove all other elements from same document.

Our 3 CO runs used PR=0, 0.1, 0.2 respectively and for the published BEPD metric
they were ranked first for some cutoff values (e.g. at A=100).

5 Discussion and summary

We described a scalable & robust component ranking algorithm that does not re-
quire any pre existing knowledge on the element types that are potential to be re-
turned. This algorithm can work on the Wikipedia collection as well as on any hetero-
geneous collection. We further tried to improve the algorithm by incorporating Pag-
eRank and AnchorText but it doesn’t seem to improve much.

As future work we should investigate the coverage of indexed elements out of all
relevant elements in the assessment pool. We should explore other indexing algorithm
that uses combination of direct size and total size for picking minimal elements. And
finally we should try to tune the algorithm with more weights of PageRank and An-
chorText terms.

References

1 Broder A.Z., Maarek Y., Mandelbrod M. and Y. Mass (2004): “Using XML to Query
XML – From Theory to Practice”. In Proceedings of RIAO'04, Avignon France, Apr
, 2004.

2 Carmel D., Farchi E., Petruschka Y., Soffer A.: Automatic Query Refinement using
Lexical Affinities with Maximal Information Gain. In Proceedings of the 25th An-
nual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 2002.

3 Carmel D., Maarek Y., Mandelbrod M., Mass Y., Soffer A.: Searching XML Docu-
ments via XML Fragments, In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Toronto,
Canada, Aug. 2003

4 Y. Mass, M. Mandelbrod, Retrieving the most relevant XML Component, Proceed-
ings of the Second Workshop of the Initiative for The Evaluation of XML Retrieval
(INEX), 15-17 December 2003, Dagstuhl, Germany, pg 53-58

5 Y. Mass, M. Mandelbrod, Component Ranking and Automatic Query Refinement for
XML Retrieval, Advances in XML Information Retrieval, LNCS 3493, INEX 2004,
Dagstuhl Germany, December 2004, pg. 73-84

6 Y. Mass, M. Mandelbrod, Using the INEX Environment as a Test Bed for various
User Models for XML Retrieval, LNCS 3977, INEX 2005, Dagstuhl Germany, No-
vember 2005, pg. 187-195

117

Indian Statistical Institute at INEX 2006 Adhoc

track: A Preliminary VSM Approach

Sukomal Pal, Mandar Mitra, and Prasenjit Majumder

Information Retrieval Lab, CVPR Unit,
Indian Statistical Institute

203, B.T. Road, Kolkata -700 108, India
{sukomal r, mandar, prasenjit t}@isical.ac.in

Abstract. This paper describes the preliminary work that Indian Sta-
tistical Institute did towards XML retrieval for INEX 2006. As a begin-
ner, we applied the Vector Space Model and made minor modifications
to a widely used and popular text retrieval system (SMART) to retrieve
XML documents against the INEX Adhoc queries. This year, we consid-
ered Content-Only(CO) queries and submitted two runs with retrieval
at the document level. The result is not-at-all satisfactory, but it gives us
enough confidence to explore the potential of the model and the system
towards XML element retrieval which we aim to do in the coming years.

1 Introduction

Traditional Information Retrieval systems return whole documents in response to
queries, but the challenge in XML retrieval is to return the most relevant parts of
XML documents which meet the given information need. INEX [1] classified the
adhoc retrieval task into two sub-tasks: Content-Only(CO) task and Content-
And-Structure(CAS) task. In the CO task, the user poses the query in free text
and the retrieval system is supposed to return the most relevant elements. A CAS
query can provide explicit or implicit indications about what kind of element the
user requires along with a textual query. Thus, a CAS query contains structural
hints expressed in XPath [2] with an about() predicate.

Our retrieval approach this year was based on the Vector Space Model which
sees both the document and the query as bags of words, and uses their tf-idf
based weight-vectors to measure the similarity between the document and the
query as angular distance (cosine-distance, to be specific) between these vectors.
The documents are retrieved and ranked in decreasing order of the similarity-
value.

We used the SMART system for our experiments at INEX 2006 and submit-
ted two runs for the thorough task of the Adhoc track considering CO queries
only. In the following section we describe our approaches for these two runs, and
discuss results and further work in Section 3.

118

2 Approach

To extract the useful parts of the given documents, we shortlisted about thirty
tags that contain useful information: <p>, <ip1>, <it>, <st>, <fnm>, <snm>,
<atl>, <ti>, <p1>, <h2a>, <body>, etc. Documents were parsed using the
LIBXML2 parser, and only the textual portions included within the selected
tags were used for indexing. Similarly, for the topics, we considered only the title
and description fields for indexing, and discarded the inex-topic, castitle and
ontopic-keywords tags. No structural information from either the queries or the
documents was used.

The extracted portions of the documents and queries were indexed using
Salton’s blueprint for automatic indexing [5]. Stopwords were removed in two
stages. First, we removed frequently occurring common words (like know, find, in-
formation, want, articles, looking, searching, return, documents, relevant, section,
retrieve, related, concerning, etc.) from the INEX topic-sets. Next, words listed
in the standard stop-word list included within SMART were removed from both
documents and queries. Words were stemmed using a variation of the Lovin’s
stemmer implemented within SMART. Documents and queries were weighted
using the Lnu.ltu [4] term-weighting formula. For each of 125 adhoc queries, we
retrieved 1500 top-ranked XML documents.

2.1 Phrases

Documents and queries were indexed using single terms and a controlled vocab-
ulary (or pre-defined set) of statistical phrases. For the baseline run, we used the
default set of phrases used by Smart to index documents/queries. This phrase-
list consists of all word-pairs that occur side-by-side 25 times or more in disk
1 of the TIPSTER collection. For the isical-wiki-phrases run, we used a set of
phrases constructed from the Wikipedia corpus. We used the N-gram Statistics
Package (NSP)1 on the English Wikipedia text corpus and selected the most
frequent 160,000 bi-grams as the list of possible phrases.

3 Result

The results reported for the two runs are shown below:

Table 1. Metric:ep-gr, Quantization: gen,Overlap=off

RunId MAep Value

isical baseline 0.0052
isical-wiki-phrase 0.0054

1 http://www.d.umn.edu/ tpederse/nsp.html

119

Since an off-the-shelf IR system was used for the task with only the minimal
changes required to make it run on the given data, and with little or no tuning
for the task, it is not surprising that the results are fairly poor. However, with
access to the relevance assessment data, we are now in a position to investigate
how structural information may be used to implement effective element-level
retrieval.

4 Conclusion

This was our first attempt at INEX. Our main objective this year was to check
whether SMART can be customized for XML retrieval and to obtain a rep-
resentatively large XML corpus. In subsequent years, we plan to incorporate
important structural information into the indexing and retrieval stage.

References

1. INEX, Initiative for the Evaluation of XML Retrieval.
http://inex.is.informatik.uni-duisburg.de/

2. XPath-XML Path Language(XPath) Version 1.0.
http://www.w3.org/TR/xpath

3. Gerard Salton, editor. The SMART Retrieval System - Experiments in Automatic
Document Retrieval. Prentice Hall Inc., 1988.

4. Chris Buckley, Amit Singhal, and Mandar Mitra. Using Query Zoning and Correla-
tion within SMART: TREC5. E.M. Voorhees and D.K. Harman, editors. Proceed-
ings of the Fifth Text Retrieval Conference(TREC-5). NIST Special Publication
500-238, 1997.

5. Gerard Salton. A Blueprint for Automatic Indexing. ACM SIGIR Forum, 16(2),
pages 22–38. Fall 1981.

120

SIRIUS XML IR System at INEX 2006: Approximate

Matching of Structure and Textual Content

Eugen Popovici, Gildas Ménier, Pierre-François Marteau

VALORIA Laboratory, University of South-Brittany
BP 573, 56017 Vannes Cedex, France

{Eugen.Popovici, Gildas.Menier, Pierre-Francois.Marteau}@univ-ubs.fr

Abstract. This paper reports on the retrieval approach taken by the VALORIA

laboratory of the University of South-Brittany while participating at INEX

2006. We describe the extensions made to the SIRIUS XML IR system to

address each of the four subtasks of the INEX 2006 ad-hoc retrieval track (i.e.

Thorough, Focused, Relevant In Context and Best In Context). Finally, we

present and analyze the SIRIUS retrieval performance evaluation obtained

within the INEX 2006 campaign.

1 Introduction

This preliminary study reports on the second year of experiments conducted by the

VALORIA laboratory at the University of South-Brittany with the SIRIUS XML IR

system [20] within the framework of the INEX evaluation campaigns.

The main contributions brought relatively to our last year participation are: i) the

evaluation of the retrieval approach against a new collection and a new set of topics,

ii) the implementation of the approximate search and indexing process using a

distributed inverted file architecture; iii) the use of selective indexing profiles defining

how the structure and the content of XML tags should be indexed, and iv) the

addressing of new requirements for the Relevant In Content and Best In Context

tasks. As for the last year we continue to investigate if and how the approximate

match of the structural constraints in the queries may help retrieval and to experiment

with different methods for removing overlapping elements.

The paper is organized as follows. In Section 2 we present the main functionalities

and characteristics of the SIRIUS XML IR system. In Section 3 we introduce our

retrieval approach for the INEX 2006 ad-hoc task. In Section 4 we present and

analyze the SIRIUS retrieval evaluation results for the Thorough, Focused, and Best

In Context tasks. Finally, in Section 5 we conclude the paper.

2 SIRIUS XML IR System

Approximate matching in XML provides the ability of querying the information

managed by a system having an incomplete or imprecise knowledge about both the

121

structure and the content of the XML documents [14, 15]. In this context, we propose

and experiment a lightweight model for indexing and querying XML

documents implemented in the SIRIUS XML IR system.

SIRIUS [6, 7, 20] is a lightweight indexing and search engine for XML documents

developed at the VALORIA laboratory of the University of South-Brittany. The

retrieval approach implemented in SIRIUS is document oriented. It involves an

approximate matching scheme of the structure and textual content. Instead of

managing the matching of whole XML trees, SIRIUS splits the documents object

model in a set of paths. This set is indexed using optimized data structures. In this

view, the request is a path-like expression with conditions on the attribute values. For

instance /document(> date "1994")/chapter(= number 3)/John is a request aiming to

extract the documents (written after 94) with the word John in the chapter number 3.

We designed a matching process that takes into account mismatched errors both on

the attributes and on the XML elements. The matching process uses a weighted

editing distance on XML paths: this provides an approximate matching scheme able

to manage jointly the request on textual content and on document structure. The

search scheme is extended by a set of IR retrieval operators, and features a set of

thesaurus rewriting rules. Recently the system has been extended with a specialized

set of operators for extracting, indexing and searching heterogeneous sequential and

time series data embedded in heterogeneous XML documents [8].

2.1 Indexing Scheme

Each element in an XML document may be composed of a set of possible nested

XML elements, textual pieces of information (TEXT or CDATA), unordered

<attribute, value> pairs, or a mixture of such items. XML documents are generally

represented as rooted, ordered, and labeled trees in which each node corresponds to an

element and each edge represent a parent-child relationship.

XML Context. According to the tree structure, every node n inherits a path p(n)

composed with the nodes that link the root to node n. This path is an ordered sequence

of XML elements potentially associated to unordered <attribute, value> pairs A(ni),

that determines the XML context in which the node is occurring. A tree node n,

containing textual/mixed information can be decomposed into textual sub-elements.

Each string s (or word, lemma, …) of a leaf node is also linked to p(n). This XML

context characterizes the occurrence of s within the document and can be represented

as follows:

p(n)=<n0 , A(n0)> <n1 , A(n1)> …<n , A(nn)> (1)

Index Model. The indexing process involves the creation of an enriched inverted list

designed for the management of these XML contexts. For this model, the entries of

the inverted lists are the textual sub-elements s of a tree node. For a sub-element s of a

node n, four pieces of information are attached:

− a link to the URI of the document <fileId>,

122

− the <preorder> and <postorder> positions of the node n in the XML tree,

− an index specifying the positions of s within the document <wordOffset>,

− a link toward its XML context p(n) <ctxtId>.

2.2 Searching Scheme

Most of the time, for large heterogeneous databases, one cannot assume that the user

knows all of the structures – even in the very optimistic case, when all of the

structural properties are known. Some straightforward approaches (such as the XPath

search scheme [16]) may not be efficient in these cases. As the user cannot be aware

of the complete XML structure of the data base due to its heterogeneity, efficient

searching should involved exact and approximate search mechanisms.

The main structure used in XML is a tree: It seems acceptable to express a search

in term of tree-like requests and approximate matching. We proposed [6], to focus on

path matching rather than on tree matching – in a similar way with the XML fragment

approach [15]. The request should be expressed as a set of path p(r) that is matched

with the set of sub-path p(n) in the document tree. This breaks the algorithmic

complexity of tree matching techniques while still providing high precision

results [5]. This ‘low-level’ matching only manage subpath similarity search with

conditions on the elements and attributes matching. This process is used to design a

more higher-level request language: a full request is a tree of low-level matching

goals (as leafs) with set operators as nodes. These operators are used to merge leaf

results. The whole tree is evaluated to provide a set of ranked answers. The operators

are classical set operators (intersection, union, difference) or dedicated fuzzy merging

processors. The system analyzes a request and produces a set of weighted results. Let

{ (ei, vi) } the set of weighted results produced by the system, where ei is a an element

of the result and vi ∈[0..1] a weight showing the relevance of the returned element to

the request.

Textual Content Ranking Scheme. We compute the relevance value vi ∈[0..1] for

all the XML elements ei containing at least one researched term τ k of a content only

request CO. The ranking scheme takes into account the number and the

discriminating power of the retrieved terms in the collection. We used a dedicated

TFIDF [18] function for this purpose:

∑⋅=
k kkii COev τλξ .),(,

where k is the number of terms τk in the CO request, λk is an IDF weighting factor

specifying the discriminating power of the term τ k in the collection :

λk = 1 – log((1+ |D τ k|) / (1+ |D|)) ; where |D τ k | is the number of documents in

which τ k is occurring ; |D| the total number of documents in the collection ; and ξ a

normalization constant ξ = 1 / Σk (λk) ;

123

Approximate Path Search. Let pR be a structural constraint, expressed as a path goal

with conditions or constraints to be fulfilled on the attributes. We investigate the

similarity between a pR (coding a path with constraints) and pi
D (a root/../terminal(r)

path of the tree TD associated to an index document D) as follow:

σ (p
R

, pi
D
) = 1/(1+ δL (p

R
, pi

D
)) (2)

where δL is a dedicated editing distance (see [12]).

The search complexity is O(l(p
R
).deep(T

D
).| { pi

D
} |) with |{ pi

D
}| the size of the

set { pi
D

} (i.e. the number of different paths in D, starting at the root and leading to

the last element of the p
R
 request – terminal(r)), l(p) the length of the path p and

deep(T) the deepest level of T. This complexity remains acceptable for this

application as 99% of the XML documents have fewer than 8 levels and their average

depth is 4 [13]. We designed [6] an editing pseudo-distance using a customised cost

matrix to compute the match between a path pi
D and the request path pR

. This scheme,

also known as modified Levenshtein distance, computes a minimal sequence of

elementary transformations to get from pi
D to pR . The elementary transformations are:

− Substitution: a node n in pi
D is replaced by a node n’ for a cost Csubst(n, n’).

− Deletion: a node n in pi
D is deleted for a cost Cdel(n),

− Insertion: a node n is inserted in pi
D for a cost Cins(n).

Weighting Scheme for INEX. The NEXI language [3] allows only the descendant

relationship between the nodes in a path. Therefore the XML path expressed in the

request is interpreted as a subsequence of an indexed path, where a subsequence need

not consist of contiguous nodes. To model this, we relaxed in [20] the weights of the

path editing distance in order to allow node deletions in the indexed paths without any

penalty: Cdel(n) = 0, Cins(n) = ξ, and Csubst(n, n’) = ξ . Since a node n not only stands

for an XML element but also for attributes or attributes relations, we compute

Csubst(n, n’) as follows: Csubst(n, n’)={ ξ if (n ≠ n’); ½·ξ if (n = n’)

 & (¬ attCond(n’)); 0 if (n = n’) & (attCond(n’)) }, where attCond stands for a

condition stated in the request that should apply to the attributes.

For a sequence Seq(pi
D
, p

R
) of elementary operations, the global cost GC(Seq(pi

D
, p

R
))

is computed as the sum of the costs of elementary operations. The Wagner&Fisher

algorithm [12] computes the best Seq(pi
D
, p

R
) (i.e. minimizes GC() cost) with a

complexity of O(length(pi
D
) * length(p

R
)) as stated earlier. Let

δL(pR
 , pi

D,) = Mink GC(Seqk(p
R
, pi

D
)) . (3)

Given pR and pi
D, the value for σ (pR , pi

D) → 0 when the number of mismatching

nodes and attribute conditions between p
R and pi

D increases. For a perfect match

σ (pR , pi
D) = 1, i.e. all the elements and the conditions on attributes from the request

p
R
 match correspondent XML elements in pi

D .

The weights used to compute the structural similarity relate to an end user having

precise but incomplete information about the XML tags of the indexed collection and

about their ancestor-descendant relationships. The structural similarity takes into

account the order of occurrence of the matched nodes and the number of nodes with

no matching in the request. It heavily penalizes any mismatch relatively to the

124

information provided by the user but it is independent to mismatches/extra

information extracted from the indexed paths.

Merging Structure and Content Matching Scores. We add structural matching

information to the set of solutions returned by the system using a weighted linear

aggregation between the conditions on structure σ (p
R

, pi
D
) and the initial/textual

ranking score vi as follows:

i

D

i

R

i vppv ⋅−+⋅=)1(),(' βσβ .

The value of the β∈[0..1] parameter may be used to emphasize the importance of the

structural versus textual content matching scores.

3 SIRIUS Approach for the INEX 2006 Ad-hoc Task

The retrieval task we are addressing at INEX 2006 is the ad-hoc retrieval of XML

documents. This involves the searching of a document collection of 4.6 GB made of

659,388 English articles from Wikipedia using a set of 125 topics. The structural part

of the collection corresponds to the Wikipedia templates (about 5000 different tags).

The topics may contain both content and structural conditions and, in response to a

query, arbitrary XML elements may be retrieved by the system. An example of an

INEX 2006 topic with the title and castitle expressed in NEXI language [3] is given

in Fig. 1.

Fig. 1. An excerpt of the INEX 2006 topic 406.

Content only (CO) queries contain just search terms (see the title part in Fig. 1) while

the content and structure (CAS) queries (see the castitle part in Fig. 1) are topic

statements that contain explicit references to the XML structure, and explicitly

specify the contexts of the user’s interest (e.g. target elements) and/or the context of

certain search concepts (e.g. support elements).

3.1 Indexing the Wikipedia Collection

This year we added to the SIRIUS system the capability of using indexing profiles for

a specific collection. The indexing profiles are composed of rules defining how the

structure and the content of each specified XML tag should be indexed. By default, all

the non empty XML tags are fully indexed. Using these profiles we may decide or not

to index the attributes associated to a given tag, to index only the content of the

125

presentation tags or jump tags [9], or to completely ignore some logical tags for a

specific collection. The use of indexing profiles may reduce significantly the volume

of the requested disk space for the index and improves the system performances both

in indexing and retrieval time.

We use the rules shown in Table 1. to index the Wikipedia collection. This

indexing profile was manually defined as we assumed that the jump and presentation

tags contained information that should not be retrieved out of their context. The

logical tags <name>, <title> and <caption> are of a particular importance for the

Wikipedia collection, as this will ensure that the <title> of a <section> will always be

retrieved with the <section> itself, that the <name> of an <article> will be retrieved

with the whole <article>, and that the <caption> of a <figure> or <table> will be

retrieved only associated to the element to which they are referring to.

Table 1. Indexing rules for the Wikipedia collection.

 Ignore tags Ignore tag attributes

Presentation tags emph2, emph3, emph4, sup table, tr, td, font

Jump tags Collectionlink, unknownlink,

outsidelink, languagelink

Logical tags title, name,

image, caption

The Wikipedia collection is processed using an XML SAX parser and standard

methods for stop words removal and stemming. At indexing time, the most frequent

words are eliminated using a stop list. The XML elements containing no valid textual

content after stop words removal are not indexed. The index terms are stemmed using

the Porter algorithm [17]. The index model (Section 2.1) is implemented on top of the

Berkeley DB1 library using a combination of BTrees and Hashtables structures. The

inverted file index is constructed in parallel by using a Physical Document

Partitioning approach [4]. The total size of the index is about 86% of the initial

database size – i.e. 4GB.

3.2 Processing NEXI Requests

Processing CO requests. CO queries are INEX topics containing only textual search

terms (i.e. see the title part in Fig. 1). We compute the relevance score for all the

leaves elements of the XML tree containing at least one of the researched terms using

a variant of the TF-IDF ranking scheme (i.e. IDF) (see Section 2.2). In our approach

we consider the XML element containing a researched term as the basic and

implicitly valid unit of retrieval regardless of its size.

Processing CAS requests. For CAS topics, we have two cases: simple queries of the

form //A[B] – i.e. the request specifies only the target elements, and complex queries

of the form //A[B]//C[D] – i.e. the request specifies both target (i.e. //C[D]) and

support (i.e. //A[B]) elements.

1 http://www.sleepycat.com/

126

Processing the Support and Target Elements. For simple type queries of the form

//A[B] like //template//*[about(.,architecture)] (see topic in Fig. 1), we rank the

textual content of the nodes using the same ranking scheme as for the CO requests.

The structural constraints from the requests are interpreted as structural hints [3]. We

compute the similarity between the structural constraints expressed in the request –

i.e. //template//* – and the XML paths of the candidate fragments using a modified

editing distance [20] involving specific heuristics for attributes and attributes values.

Finally we merge the content and structural match scores using a weighted linear

aggregation method (see Section 2.2).

Processing the Containment Conditions. To process complex queries of the form

//A[B]//C[D] (see the castitle part in Fig. 1) we compute the relevance for both the

support elements //A[B] and target elements //C[D]. Next, we select only the target

elements that have at least a relevant support element occurring in the same

document. The logic behind this is that if a relevant support element exists in a

document, its weight should be propagated using a max function to the root node of

the XML tree that is an ancestor – i.e. support element – for all the elements of the

tree. This applies inclusively to the target elements.

The similarity computation for a complex request involves modifications of the

relevance associated with a result element. The relevance of a result element is

computed as the arithmetic average between the relevance of the target element and

the maximum relevance of its support elements.

Formally, let {(ei, vi)} the set of target results, {(ej, vj)} the set of support

elements, where ei is a an element of the result and vi ∈[0..1] its relevance weight. Let

e
D a descendant of document D. The set of weighted results produced by the system is

{ (ei
D
, v’i) } with v’i =(vi + Maxj (vj)) / 2 where ∃ ej

D ∈ { (ej, vj) }.

 Using this approach, the target elements that have no support elements are

discarded from the final answers, while the ones supported by highly relevant

elements are boosted in the final ranking. The final results are sorted by relevance

values and the top N results returned.

4 Experimental Results

We submitted a total of 20 runs to all of the four tasks of the ad-hoc retrieval track:

Thorough, Focused, Relevant In Context and Best In Context tasks. In all the

submitted runs we used the same basic retrieval approach:

− To answer INEX 06 topics, we use automatic transformation of the title and

castitle part of the topics expressed in NEXI [3] to SIRIUS recursive query

language as described in [20].

CO runs

− The XML elements directly containing the research terms are considered as

independent and the only valid units of retrieval;

− IDF weighting for textual content of the leaf nodes containing the researched terms

(i.e. *IDF*) (see Section 2.2);

127

− Strict and vague search for phrase matching. In the strict sequence matching runs

the researched terms must occur in sequence and belong to the same XML element.

This is not required for the vague phrase matching runs (i.e. *noSEQ*) that rank as

best results the XML elements containing all the researched terms without taking

into account their order of occurrence.

CAS runs (*cas*)

− The structural constraints on both the support elements (where to look) and on the

target elements (what to return) are interpreted vaguely, as structural hints. The

vague interpretation of the structural constraints is implemented using a modified

editing distance (*EDs*) on the XML paths with conditions on attributes and

attributes values (see Section 2.2) .

− We use weighted linear aggregation for content and structure matching scores. (see

Section 2.2) The runs (*W0_1*, *W0_5*) use different values for the β parameter

to emphasize the importance of the structural versus textual content matching (i.e.

β =0.1 biases the ranking towards the textual content while β=0.5 uses equal

weights for merging the structural and content matching relevance scores).

− We use boolean (*BOOL*) merging operators at document level.

4.1 Thorough Task

At the Thorough task, the system estimates the relevance of elements in the

collection. We submitted five runs identified by runId’s using combinations of the

abbreviations introduced above. We report in Fig. 2. the evaluation curves for the

ep/gr metric and in Table 2. the official system-oriented MAep measure and the ranks

obtained by all the submitted runs . Details of the evaluation metrics can be found

in [2].

Table 2. Task: Thorough, Metric:ep-gr, Quantization: gen, Overlap=off

RunId MAep Rank

IDF_BOOL_noSEQ 0.0158 42/106
IDF_BOOL 0.0151 45/106

casEDsW0_1_IDF_BOOL_noSEQ 0.0146 48/106

casEDsW0_5_IDF_BOOL_noSEQ 0.0134 50/106

casEDsW0_5_IDF_BOOL 0.0130 51/106

We were ranked on the 42, 45, 48, 50 and 51 places from 105 submissions. This is not

surprising as the implementation of our approach is biased towards focused retrieval.

A rather surprising result is the fact that using the structural hints does not improve

the retrieval quality of the results. Rather the opposite. This is contradictory with the

evaluation results obtained for the INEX2005 ad-hoc collection and topics [20]. The

best overall performance is obtained by the run using only the textual content and no

phrase constraints (IDF_BOOL_noSEQ) with a MAep value of 0.0158.

128

4.2 Focused Task

The aim of the Focussed retrieval strategy is to find the most exhaustive and specific

element in a path. In other words, the result list should not contain any overlapping

elements. In our approach for the Thorough task we consider the XML element

containing a researched term as the basic and implicitly valid unit of retrieval

regardless of its size. This approach “naturally” implements a focused strategy as it

returns the most focused elements containing the research terms. However, cases

where nested/overlapping XML elements could be returned as valid results may

occur.

Fig. 2. INEX’2006 Result Summary: Task: Thorough, Metric:ep/gr ,

Quantization: gen, Overlap: off.

For the Focused runs we use a similar approach as for the Thoroug task and

implement a two steps post filtering process to remove the overlapping elements from

the results [20]: i) we recalculate the relevance of the elements in the answer list in

order to reflect the relevance of their descendants elements (if any); and ii) we select

non overlapping elements from the list.

The weights are calculated recursively starting at leafs to the highest non

overlapping nodes composing the answer by using two strategies:

− MAX - the max relevance value is propagated recursively to the highest non

overlapping elements; and

− AVG - the relevance of a node is computed as the arithmetic average of all its

descendant relevant nodes including its own relevance.

To select the non overlapping elements we compared the following strategies

strategies:

− HA - the highest ancestor from the answer list is selected;

− MR - the most relevant answer is selected recursively from the answer list as long

as it not overlaps with an already selected element – i.e. for equally relevant

129

overlapping elements we choose either the descendant (MRD) or the ancestor

(MRA).

We experimented with different settings for computing the elements relevance and

selecting the non overlapping answers for the Focused tasks within the framework of

the INEX 2005 campaign [20]. This year we selected only the MAX_MRD and

MAX_HA strategies for the focused task as they obtained the best results during the

INEX 2005 evaluation.

Fig. 3. INEX’2006 Result Summary: Task: Focused Metric:nxCG, Quantization:

generalised, Overlap=on (left fig.) ; and Overlap=off (right fig.)

Table 3. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=on.

RunId nxCG@5 nxCG@10 nxCG@25 nxCG@50

IDF_BOOL_noSEQ_MAX_MRD 0.2882 47 0.2759 24 0.2393 13 0.2095 6
IDF_BOOL_MAX_MRD 0.2889 45 0.2695 28 0.2391 14 0.2022 9

casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2335 66 0.2215 60 0.1965 35 0.1638 29

casEDsW0_5_IDF_BOOL_MAX_MRD 0.2338 65 0.2202 61 0.1933 40 0.1572 35

casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2055 73 0.1996 65 0.1693 54 0.1436 46

Table 4. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=off.

RunId nxCG@5 nxCG@10 nxCG@25 nxCG@50

IDF_BOOL_noSEQ_MAX_MRD 0.3227 38 0.3238 16 0.2807 12 0.2424 9

IDF_BOOL_MAX_MRD 0.3180 40 0.3093 21 0.2768 14 0.2339 12

casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2770 60 0.2829 36 0.2475 21 0.2071 20

casEDsW0_5_IDF_BOOL_MAX_MRD 0.2719 62 0.2735 41 0.2418 27 0.2002 21

casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2073 73 0.2063 66 0.1779 59 0.1477 46

We report here the nxCG values @5, @10, @25 and @50 (see [2] for metric

descriptions) for all the submitted focused runs, along with their official ranks in the

INEX06 campaign (see Table. 3, Table 4. and Fig. 3.).

For the Focused task, the system is better ranked than on the Thorough task

regardless if it is evaluated with the overlap ‘on’ or ‘off’. SIRIUS has three results in

130

in the top ten runs: a 6/85 rank for IDF_BOOL_noSEQ_MAX_MRD with

nxCG@50=0.2095 and overlap on, a 9/85 rank for IDF_BOOL_MAX_MRD with

nxCG@50=0.2022 with overlap ‘on’, and a 9/85 rank for IDF_BOOL_noSEQ_MAX_MRD

with nxCG@50=0.2424 with overlap ‘off’.

By analyzing the nxCG curves of Fig. 3 we observe that the SIRIUS runs have a

good recall. This may be explained by the fact that in the approach taken for the

INEX 2006 ad-hoc task we return mostly leaf elements which are shown to be

effective retrieval units for the focussed strategy [19]. We also observe a slightly

decrease in the system retrieval performance for the first ranked results relative to the

INEX 2005 evaluation [20]. This may be determined by the indexing configuration

settings (see Table 1.). The indexing profile did not allowed for a large number of

small/possibly relevant focused elements (i.e. jump tags & presentation tags) to be

retrieved. We observe that as for the Thorough task, the runs involving structural

conditions performed worse than their content only pairs.

4.3 Relevant in Context Task,

The INEX 2006 Relevant In Context task has to find a set of elements that

corresponds well to (all) relevant information in each article. The relevant elements

must be clustered per article and ordered in their original document order when

returned to the user. The assumption is that users consider the article as the most

natural unit, and prefer an overview of relevance in their context.

For this task, we used as starting point the approach used for the Focused runs. We

propagate the max relevance obtained for the non overlapping elements at the file

level. The files are ranked by their relevance. We clustered the non overlapping

results by file and ranked them according to their relevance inside each file. We

returned the top N relevant results for each file, where N={5, 10} until reaching the

INEX 2006 max results limit per topic (i.e. 1500 results).

The evaluation results for this task were not yet available at the moment of writing

this paper.

4.4 Best in Context Task

Best In Context task returns a ranked list of articles. For each article, it returns a

single element, representing the best entry point for the article with respect to the

topic of request. For this task we used the same approach as for the Relevant In

Context Task with N set to 1. The official results evaluated with BEP-D (see Table 5.)

and EPRUM-BEP-Exh-BEPDistance [10] (see Table 6.) were ranked several times in

the top ten positions out of 77 submitted runs. The top ten results are highlighted

while the best obtained values are emphasized.

Table 5. Task: Best In Context. Metric: BEPD.

RunId A=0.01 A=0.1 A=1 A=10 A=100

IDF_BOOL_noSEQ_AVG_MRD 0.1959 1 0.2568 2 0.3642 6 0.5596 6 0.7556 7

IDF_BOOL_MAX_HA 0.1722 2 0.2753 1 0.4095 1 0.5847 3 0.7542 8

casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.1394 16 0.2303 8 0.3580 7 0.5239 18 0.6853 27

casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.1346 17 0.2222 12 0.3447 12 0.5048 24 0.6631 36

casEDsW0.5_IDF_BOOL_MAX_HA 0.1322 19 0.2114 17 0.3222 23 0.4691 36 0.6170 45

131

Table 6. Task: Best In Context. Metric:EPRUM-BEP-Exh-BEPDistance.

RunId A=0.01 A=0.1 A=1 A=10 A=100

IDF_BOOL_noSEQ_AVG_MRD 0.0407 1 0.0579 8 0.0873 13 0.1489 16 0.2193 35

IDF_BOOL_MAX_HA 0.0304 4 0.0607 6 0.1069 7 0.1770 8 0.2536 14

casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.0233 24 0.0478 15 0.0881 12 0.1480 19 0.2180 36

casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.0218 31 0.0444 24 0.0812 20 0.1363 34 0.2031 42

casEDsW0.5_IDF_BOOL_MAX_HA 0.0214 34 0.0435 29 0.0785 23 0.1323 38 0.1969 44

The Best In Context task results confirmed that the runs using structural hints (*cas*)

are ranked lower than the ones using only the textual content. We have a single

content and structure run in the top ten results casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA

for A=0.1 when evaluated with the BEPD metric (see Table 5.). The AVG_MRD

method for overlap removal gives better results than the MAX_HA technique. This

may be considered with care, as may also be an effect of relaxing the constraints on

phrase searching for the IDF_BOOL_noSEQ_AVG_MRD run – ranked on 1st /77 position

by both the BEPD and EPRUM-BEP-Exh-BEPDistance metrics.

5 Conclusions

This year, at INEX 2006, we have pursuit the evaluation of the retrieval performances

of the SIRIUS XML IR system [6, 7, 8] started last year within the INEX 2005

campaign [20]. SIRIUS retrieves relevant XML elements by approximate matching

both the content and the structure of the XML documents. A modified weighted

editing distance on XML paths is used to approximately match the documents

structure while the IDF of the researched terms are used to rank the textual contents of

the retrieved elements. A number of extensions were brought to the system in order to

cope with the requirements of the Thorough, Focused, Relevant In Context and Best

In Context tasks.

We have submitted and evaluated 20 valid runs in all the INEX 2006 ad-hoc tasks,

and showed the system ability to retrieve relevant non overlapping XML elements

within the Focused and Best In Context tasks. SIRIUS obtained average rankings for

the Thorough task and good quality results in the range of the 50 first ranked answers

for the Focused task (see Fig. 3.). For the Best In Context task the results were quite

encouraging as the system was ranked several times within the top ten runs out of 77

submissions. (see Table 5., and Table. 6.).

The runs using structural constraints were consequently outperformed by the runs

using content only conditions, while the runs using strict constraints for phrase

searching were outperformed by their variants using no constraints for phrases.

Our experiments at INEX 2005 showed that taking into account the structural

constraints improved the retrieval performances of the system and jointly showed the

effectiveness of the proposed weighted editing distance on XML paths for this task.

This observation was not confirmed by any of the tasks evaluated at INEX 2006.

More experimental studies are necessary to better understand the reasons for this

behaviour.

132

References

1. Clarke C., Kamps J., Lalmas M., INEX 2006 Retrieval Task and Result Submission

Specification, In INEX 2005 Workshop Pre-Proceedings, Dagstuhl, Germany, December

18–20, 2006.

2. Kazai, G., Lalmas, M., INEX 2005 Evaluation Metrics. In Advances in XML Information

Retrieval and Evaluation: Fourth Workshop of the INitiative for the Evaluation of XML

Retrieval (INEX 2005), LNCS, Vol 3977, 2006.

3. Trotman A., & Sigurbjörnsson B., Narrowed Extended XPath I (NEXI) In Proceedings of

the INEX 2004 Workshop, p. 16-40, 2004 .

4. Baeza-Yates R. and Ribeiro-Neto B. Modern Information Retrieval. ACM Press. Addison-

Wesley, New-York, 1999.

5. Amer-Yahia S., Koudas N., Marian A., Srivastava D., and Toman D., Structure and Content

Scoring for XML, VLDB 2005 Trondheim, Norway, pages 361–372, 2005.

6. Ménier G., Marteau P.F., Information retrieval in heterogeneous XML knowledge bases,

The 9th International Conference on Information Processing and Magement of Uncertainty

in Knowledge-Based Systems, 1-5 July 2002, Annecy, France, 2002.

7. Ménier G., Marteau P.F., PARTAGE: Software prototype for dynamic management of

documents and data, ICSSEA, 29 Nov-1 Dec. 2005, Paris, France, 2005.

8. Popovici E., Marteau P.F., Ménier G., Information Retrieval of Sequential Data in

Heterogeneous XML Databases, AMR 2005, 28-29 July 2005, Glasgow, UK, 2005.

9. Tannier X., Girardot J.-J., and Mathieu. M., Classifying XML Tags through “Reading

Contexts”. In P. R. King, editor, Proceedings of the 2005 ACM Symposium on Document

Engineering, pages 143–145, Bristol, United Kingdom, Nov. 2005. ACM Press, New York

City, NY, USA.

10. Piwowarski B., Dupret G., Evaluation in (XML) information retrieval: expected precision-

recall with user modelling (EPRUM). SIGIR 2006, pp 260-267.

11. Levenshtein A., Binary Codes Capable of Correcting Deletions, Insertions and Reversals,

Sov.Phy. Dohl. Vol.10, P.707-710, 1966.

12. Wagner R., Fisher M., The String-to-String Correction Problem, Journal of the Association

for Computing Machinery, Vol.12, No.1, p.168-173, 1974.

13. Mignet L.,Barbosa D.,Veltri P., The XML Web: A First Study, WWW 2003, May 20-24,

Budapest, Hungary, 2003.

14. Carmel D., Maarek Y. S., Mandelbrod M., Mass Y. and Soffer A., Searching XML

documents via XML fragments, SIGIR 2003, Toronto, Canada p. 151-158, 2003.

15. Fuhr N., Groβjohann K., XIRQL: An XML query language based on information retrieval

concepts, TOIS, v.22 n.2, p.313-356, April 2004.

16. Clark J., DeRose S., XML Path Language (XPath) Version 1.0, W3C Recommendation 16

November 1999, http://www.w3.org/TR/xpath.html, 1999.

17. Porter M.F., An algorithm for suffix stripping, Program, 14(3):130-137, 1980.

18. Salton G. and Buckeley C., Term-weighting approaches in automatic text retrieval,

Information Processing and Management, 24, p. 513-523, 1988.

19. Mihajlovic V., Ramirez G., Westerveld T., Hiemstra D., Blok H. E., de Vries A., TIJAH

Scratches INEX 2005: Vague Element Selection, Overlap, Image Search, Relevance

Feedback, and Users', INEX 2005 Workshop Pre-Proceedings, Dagstuhl, Germany,

November 28–30, 2005, p. 54-71, 2005.

20. Popovici E., Ménier G., and Marteau P.-F., SIRIUS: A Lightweight XML Indexing and

Approximate Search System at INEX 2005, In Advances in XML Information Retrieval and

Evaluation: Fourth Workshop of the INitiative for the Evaluation of XML Retrieval

(INEX 2005), LNCS, Vol 3977, pages 321-335, 2006.

133

A Method of Preferential Unification of Plural

Retrieved Elements for XML Retrieval Task

Hiroki Tanioka

Innovative Technology R&D, JustSystems Corporation,
Brains Park Kawauchi-cho Tokushima-shi Tokushima, Japan

hiroki tanioka@justsystem.co.jp

Abstract. We developed a passage retrieval system for XML documents
with the vector space model. We also developed a method of unifica-
tion of plural retrieved elements using XML Path Language (XPath)
and Fragment Indexing System (FIS) we called. Therefore our system,
which composed of the fragmentary inverted file and the simplified XML
database, was confirmed the validity of the method from the results
of Adhoc Track in the Initiative for the Evaluation of XML Retrieval
(INEX) 2006.

1 Introduction

In the research field of document information retrieval, the unit of retrieval
results returned by information retrieval systems is a whole document or a doc-
ument fragment, like a paragraph in passage retrieval. Generic information re-
trieval systems based on the vector space model compute feature vectors of the
units and calculate the similarities between the units and the query. However,
the unit of retrieval results is unfit yet for document information retrieval, since
it is not what users looking for.

Therefore, the unit of retrieval results should be a portion of XML document,
such as a chapter, section, or subsection. This is undeniable that all XML docu-
ments consist of several portions and contain some portions which are meaningful
to the users. It is easier to construct the appropriate portion of XML documents
as the unit of retrieval results than unstractured plaintexts, because XML is a
standard document format consists of contents and document structures, and
also XML format is widely used on the Internet.

But nonetheless the appropriate fragmentation problem remains still un-
solved, which is difficulties of XML passage retrieval task, like the automatic
text summarization in document processing and the object segmentation in im-
age processing. Therefore, we propose an efficient index structure and flexible
information retrieval system for XML documents.

In the objective described above, we examine the “applicability” and the
“scalability” of fragmentary indexing approach for the generic information re-
trieval model, by developing an XML retrieval system and testing with INEX
corpus. This article describes the points and the validation results of our pro-
posed index structure and the information retrieval system called Fragment In-
dexing System (FIS), Then, our motivations in INEX 2006 are listed bellow.

1. To verify the “applicability” of fragmentary indexing approach for generic
imformation retrieval model, we check the accuracy of retrieving results.

134

Fig. 1. System description

2. To test the “scalability” of the XML retrieval system, we measure the fol-
lowing size and time.
(a) The size of an inverted file – spatial scalability (space complexity)
(b) The processing time of retrieving – temporal scalability (time complexity)

The rest of the article is divided into three sections. Section 2, we describe an
architecture of our indexing and retrieving system for XML documents. Section
3, we describe experimental results. And Section 4, we discuss about results and
future works.

2 System Description

In this section we describe the architecture of our distributed search system
as shown in Figure 1 and information retrieval models including an indexing
method with fragment indexing algorithm and an scoring method with prefer-
encial unification algorithm.

2.1 Index

We develop a distributed search system which is based on the vector space
model using term (as word) partitioning with an inverted file-based system,
while a single inverted file is created for the document collection and the inverted
lists are spread across the processors[6]. During query evaluation, the query is
decomposed into indexing items and each indexing item is sent to the processor
that holds the corresponding inverted file[2].

And our distributed search system bring in the simplified XML database.
Hence we create our runs using two types of inverted files, one for XML articles
and the others for all XML elements.

135

Fig. 2. Fragment indexing algorithm

Article Index. For XML articles, the unit is a whole XML document containing
all the terms appeared at any nesting level within the <article> tag. This method
is commonly used by a traditional inverted file for document retrieval.

Element Index. For XML elements, the unit is some XML elements included
<article> tag. For each element containing only text located directly below.
Hence every units are no overlap and flat. In this particular case, all units need
not only identification but also addressing of XML elements (Figure 2).

XPath List. XPath is a language for addressing parts of an XML document[1].
In our scheme, each element in an XML document is identified by 2 parts, a
file path of XML document as an article and an absolute path of an element in
XML document. Though our system does not support XML tag attributes.

The file path identifies documents in the collection. And the absolute XPath
expression identifies XML elements within the document, indicates the position
of the element relative to the root element; for instance:

File path : C:/INEX/ex/2001/x0321.xml

Absolute XPath : /article[1]/bdy[1]/sec[5]/p[3]

Fragmental Indexing. Figure 2 shows an algorithm of making a fragment inverted
file and a coordinate XPath list. The inverted file composed of three members: a
word, a node identifier, a frequency of the word in the node. While the XPath list
must numerate all nodes of XML trees in inorder traversal. When we select the
sequence to sort, we can expect that the retrieval time reduced. As for details,
please refer to the next section.

136

Fig. 3. Preferential unification algorithm

2.2 Retrieval Model

Figure 3 shows an overview of this retrieving framework. This system is based
on the tf-idf (term frequency-inverse document frequency) weight.

Tf-idf Weighting. Let N be the total number of documents(as elements) in the
system and ni be the number of documents in which the index term ki appears.
Let fi,j be the raw frequency of term ki in the document dj . Then, the normalized
frequency tfi,j of term ki in document dj and inverse document frequency idfi

for ki are given by

tfi,j =
fi,j

maxl fl,j
, idfi = log

N

ni

where the maximum is computed over all terms which are mentioned in the text
of the document dj . If the term ki does not appear in the document dj then
tfi,j = 0. The best known term-weighting schemes and a simple simirarity use
tf-idf weights, which are given by

sim(dj , q) =
t∑

i=1

wi · tfi,j · idfi

sim(Dk, q) =
∑

dj∈Dk

sim(dj , q)

let wi is the weight in a query q = (w1, w2, · · · , wt), where wi ≥ 0 and t is
the total number of index terms in the system. Additionally, to consolidate
fragmented index, let Dk is a set of fragmented elements, which will become a
meaningful unit to the users by preferencial unification.

137

Table 1. THOROUGH TASK.

Run ID Description MAep Rank

VSM 1 - 0.0031 90/106
VSM 2 normalized TF 0.0047 89/106
VSM 3 unit=10 0.0064 79/106

∗ ep-gr(Quantization:gen,Overlap=off)
shows a case of results.

Table 2. FOCUSED TASK.

Run ID Description nxCG@5 Rank

VSM 4 unit=10 0.1945 74/85
VSM 5 unit=50 0.1672 77/85
VSM 6 unit=100 0.2305 68/85

∗ nxCG(Quantization:gen,Overlap=on)
shows a case of results.

Table 3. BEST IN CONTEXT TASK.

Run ID Description At A=1.0 Rank

VSM 10 unit=10 0.2376 50/77
VSM 11 unit=50 0.2912 33/77
VSM 12 unit=100 0.3074 28/77

∗ BEPD shows a case of results.

Table 4. Processing time.

Searching time [s]

Article index 2.01
Element index 66.2

∗ Searching time is the average time of
retrieving par query.

3 Experimental Results

The system was only designed for content-only conditions (CO queries). Then
each post-processing dealt with differences between all four sub-tasks within the
ad-hoc XML retrieval task.

3.1 THOROUGH TASK

THOROUGH TASK asks systems to estimate the relevance of elements in the
collection. Hence the system produced 2 runs with the Article Index and 1 run in
the Element Index with unit1. THOROUGH TASK: are no further restrictions.
Overlap is even permitted. Then, the system has no use for post-processing.

3.2 FOCUSED TASK

FOCUSED TASK asks systems to return a ranked list of elements to the user.
Hence the system produced 3 runs in the Element Index. FOCUSED TASK: for
the same topic, results may not be overlapping. That is, overlap is not permitted
in the submitted run. Then, the system can apply the post-processing to reduce
overlaping elements.

3.3 BEST IN CONTEXT TASK

BEST IN CONTEXT TASK asks systems to return articles with one best entry
point to the user. Hence the system produced 3 runs by retrieving in the Element
Index. BEST IN CONTEXT TASK: only single result per article is allowed.
Then, the system can adopt the post-processing to filter that only one single
element per article allowed.

1 The unit in description which is one unit, consists of the number of retrieved elemnets
in Element Index, as upper limit.

138

3.4 Time and Size

As Element Index, the results showed the searching time was markedly increased
as compared with Article Index, as shown in Table 4. Also, the sizes of inverted
files as Article and Element are 936 [MB] and 2,100 [MB] excluding XPath list:
1,749 [MB], respectively.

4 Conclusions

We proposed a method of fragmental indexing and an unification algorithm
of retrieved elements. Even the system was not trained at all, the evaluation
results showed more acceptable result from the unification approach than from
the standerd approach. Although, the system have one research issue, that is, the
preferential unification algorithm takes longer than no unification. The reason is
that the time of seeking in XPath list expends time. Then, further research has
the improvement in seeking speed for XPath, before the accuracy improvement.

References

1. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath
2. Ricardo Baeza-Yates, Berthier Ribeiro-Neto: Modern Information Retrieval (Acm

Press Series). Addison-Wesley. (1999) 1–69, 141–162
3. Salton G., Wong A., Yang C. S.: A vector space model for automatic indexing.

Communications of the ACM. 18 (1975) 613–620
4. D.Evans, R.Lefferts: Design and Evaluation of the CLARIT-TREC-2 system. In

D.K.Harman editor, Proceedings of the Second Text REtrieval Conference (TREC-
2). NIST Special Publication. (1994) 500–548

5. Andrew Trotman, Shlomo Geva: Passage Retrieval and XML-Retrieval Tasks. In
Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval Methodology.
(2006) 43–50

6. Hiroki Tanioka, Kenichi Yamamoto, Takashi Nakagawa: A Distributed Retrieval
System for NTCIR-5 WEB Task. In The 5th NTCIR Workshop Meeting, 2005

7. Hiroki Tanioka, Kenichi Yamamoto: A Distributed Retrieval System for NTCIR-5
Patent Retrieval Task. In The 5th NTCIR Workshop Meeting, 2005

8. Torsten Grabs, Hns-Jörg Schek: Flexible Information Retrieval on XML Docu-
ments. In Intelligent Search on XML Data. Applications, Languages, Models, Im-
plementations, and Benchmarks. Springer Verlag, Berlin. 2818 (2003) 95–106

9. G. Kazai and N. Gvert and M. Lalmas, and N. Fuhr: The INEX evaluation initia-
tive. In Intelligent Search on XML Data. Applications, Languages, Models, Imple-
mentations, and Benchmarks. Springer Verlag, Berlin. 2818 (2003) 279–293

10. Kenji Hatano, Hiroko Kinutani, Masahiro Watanabe, Masatoshi Yoshikawa, and
Shunsuke Uemura: Determining the Unit of Retrieval Results for XML Documents.
In INEX Workshop. (2002) 57–64

11. Borkur Sigurbjornsson, Jaap Kamps, Maarten de Rijke: An element-based ap-
proach to XML retrieval. In INEX 2003 Workshop Proceedings. (2003) 19–26

12. Shlomo Geva, Murray Leo-Spork: XPath Inverted File for Information Retrieval.
In INEX 2003 Workshop Proceedings. (2003) 110–117

13. Wayne Kelly, Shlomo Geva, Tony Sahama, Wengkai Loke: Distributed XML Infor-
mation Retrieval. In INEX 2003 Workshop Proceedings. (2003) 126–133

14. Vojkan Mihajlovic, Georgina Ramirez, Thijs Westerveld, Djoerd Hiemstra, Henk
Ernst Blok, and Arjen P. de Vries: TIJAH Scratches INEX 2005: Vague Element
Selection, Image Search, Overlap, and Relevance Feedback. In INEX. (2005) 72–87

139

TopX – AdHoc and Feedback Tasks

Martin Theobald, Andreas Broschart, Ralf Schenkel, Silvana Solomon, and
Gerhard Weikum

Max-Planck-Institut für Informatik
Saarbrücken, Germany

http://www.mpi-inf.mpg.de/departments/d5/

{mtb,abrosch,schenkel,solomon,weikum}@mpi-inf.mpg.de

Abstract. This paper describes the setup and results of our contribu-
tions to the INEX 2006 AdHoc and Feedback tasks.

1 System Overview

TopX [10, 11] aims to bridge the fields of database systems (DB) and informa-
tion retrieval (IR). From a DB viewpoint, it provides an efficient algorithmic
basis for top-k query processing over multidimensional datasets, ranging from
structured data such as product catalogs (e.g., bookstores, real estate, movies,
etc.) to unstructured text documents (with keywords or stemmed terms defin-
ing the feature space) and semistructured XML data in between. From an IR
viewpoint, TopX provides ranked retrieval based on a relevance scoring function,
with support for flexible combinations of mandatory and optional conditions as
well as text predicates such as phrases, negations, etc. TopX combines these two
aspects into a unified framework and software system, with emphasis on XML
ranked retrieval.

Figure 1 depicts the main components of the TopX system. It supports three
kinds of front-ends: as a servlet with an HTML end-user interface (that was
used for the topic development of INEX 2006), as a Web Service with a SOAP
interface (that was used by the Interactive track), and as a Java API (that was
used to generate our runs). TopX currently uses Oracle10g as a storage system,
but the JDBC interface would easily allow other relational backends, too.

The Indexer parses and analyzes the document collection and builds the in-
dex structures for efficient lookups of tags, content terms, phrases, structural
patterns, etc. An Ontology component manages optional ontologies with vari-
ous kinds of semantic relationships among concepts and statistical weighting of
relationship strengths; we used WordNet [2] for some of our runs.

At query run-time, the Core Query Processor decomposes queries and invokes
the top-k algorithms. It maintains intermediate top-k results and candidate items
in a priority queue, and it schedules accesses on the precomputed index lists in
a multi-threaded architecture. Several advanced components provide means for
run-time acceleration:

140

Large Corpus
Correlation Statistics

Large Corpus
Correlation StatisticsThesaurus with

Statistically
Quantified Concept

Similarities

Thesaurus with
Statistically

Quantified Concept
Similarities Index List Meta Data

(e.g., Histograms)
Index List Meta Data

(e.g., Histograms)

DBMS / Inverted Lists
Text & XML Schema

DBMS / Inverted Lists
Text & XML Schema

R
andom

 A
ccess

Probabilistic
Index Access
Scheduling

Probabilistic
Index Access
Scheduling

Probabilistic
Candidate Pruning

& Garbage Collection

Probabilistic
Candidate Pruning

& Garbage Collection

Dynamic
Query Expansion

Dynamic
Query Expansion

Incremental Path
Evaluation for

Content & Structure

Incremental Path
Evaluation for

Content & Structure

Top-k
Queue
Top-k
Queue

Scan threads
Sorted Access
in descending
order of scores

Auxiliary
Predicate Probing

Auxiliary
Predicate Probing

Candidate
Cache

Candidate
Queue

TopX Core Query Processor
• Cost-Based Random Access Scheduling
• Expensive Predicate Probing
• Early Threshold Termination

TopX Core Query Processor
• Cost-Based Random Access Scheduling
• Expensive Predicate Probing
• Early Threshold Termination

Pr
ec

om
pu

ta
tio

n
Ti

m
e

Q
ue

ry
 P

rc
ce

ss
in

g
Ti

m
e

Frontends
• Web Service
• Web interface
• API

Frontends
• Web Service
• Web interface
• API

Indexer/CrawlerIndexer/Crawler

Fig. 1. TopX architecture.

– The Probabilistic Candidate Pruning component [12] allows TopX to drop
candidates that are unlikely to qualify for the top-k results at an early stage,
with a controllable loss and probabilistic result guarantees.

– The Index Access Scheduler [1] provides a suite of scheduling strategies for
sorted and random accesses to index entries.

– The Incremental Path Evaluation uses additional cost models to decide when
to evaluate structural conditions like XML path conditions, based on spe-
cialized indexes for XML structure.

– The Dynamic Query Expansion component [9] maps the query keywords
and/or tags to concepts in the available ontology and incrementally generates
query expansion candidates.

2 Data Model and Scoring

We refer the reader to [11] for a thorough discussion of the scoring model. This
section shortly reviews important concepts.

2.1 Data Model

We consider a simplified XML data model, where idref/XLink/XPointer links are
disregarded. Thus every document forms a tree of nodes, each with a tag and
a related content. We treat attributes nodes as children of the corresponding

141

element node. The content of a node is either a text string or it is empty;
typically (but not necessarily) non-leaf nodes have empty content. With each
node, we associate its full-content which is defined as the concatenation of the
text contents of all the node’s descendants in document order.

2.2 Content Scores

For content scores we make use of element-specific statistics that view the full-
content of each element as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in node n, which is the
number of occurrences of t in the full-content of n;

2) the tag frequency, NA, of tag A, which is the number of nodes with tag A in
the entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A, which is the
number of nodes with tag A that contain t in their full-contents in the entire
corpus.

The score of an element e with tag A with respect to a content condition
of the form *[about(., t)] is then computed by the following BM25-inspired
formula:

score(e, *[about(., t)]) = (1)
(k1 + 1) ftf(t, e)

K + ftf(t, n)
· log

(
NA − efA(t) + 0.5

efA(t) + 0.5

)

with K =

k1

(
(1 − b) + b

∑
s∈ full content of e ftf(s, e)

avg{
∑

s′ ftf(s′, e′) | e′ with tag A}

)

For a query content condition with multiple terms, the score of an element
satisfying the tag constraint is computed as the sum of the element’s content
scores for the corresponding content conditions, i.e.:

score(e, *[about(., t1 . . . tm)]) =
m∑

i=1

score(e, *[about(., ti)]) (2)

TopX provides the option to evaluate queries either in conjunctive mode or
in “andish” mode. In the first case, all terms (and, for content-and-structure
queries, all structural conditions) must be met by a result candidate, but still
different matches yield different scores. In the second case, a node is already
considered a match if it satisfy at least one content condition.

Orthogonally to this, TopX can be configured to return two different gran-
ularities as results: in document mode, TopX returns the best documents for a
query, whereas in element mode, the best target elements are returned, which
may include several elements from the same document.

142

2.3 Structural Scores

Given a query with structural and content conditions, we transitively expand all
structural query dependencies. For example, in the query //A//B//C[about(.,
t)] an element with tag C has to be a descendant of both A and B elements.
Branching path expressions can be expressed analogously. This process yields a
directed acyclic graph (DAG) with tag-term conditions as leaves, tag conditions
as inner nodes, and all transitively expanded descendant relations as edges.

Our structural scoring model essentially counts the number of navigational
(i.e., tag-only) conditions that are satisfied by a result candidate and assigns
a small and constant score mass c for every condition that is matched. This
structural score mass is combined with the content scores. In our setup we have
set c = 1, whereas content scores are normalized to [0, 1], i.e., we emphasize the
structural parts.

3 AdHoc Track Results

There were two major changes in this year’s AdHoc Track: The queries were run
agains the Wikipedia collection instead of the old IEEE collection, and there was
only a single dimension of relevance (i.e., specificity) instead of both exhaustivity
and specifitiy. As a consequence of this, smaller elements should be favored over
larger elements (e.g., complete articles) at least for the Thourough subtask. Our
scoring functions do not take this into account as they are still tuned towards
the old twodimensional relevance (with exhaustivity and specificity).

For each subtask, we submitted at least the following four types of runs:

– CO {subtask} baseline: a CO run that considered the terms in the title of
a topic without phrases and negations, limiting tags of results to article,
section, and p.

– CO {subtask} exp: a CO run that considered terms as well as phrases and
negations (so-called expensive predicates), again limiting tags of results to
article, section, and p.

– CAS {subtask} baseline: a CAS run that considered the castitle of a topic
if it was available, and the title otherwise. The target tag was evaluated
strictly, whereas support conditions were optional; phrases and negations
were ignored.

– CAS {subtask} exp: a CAS run that additionally considered phrases and
negations.

3.1 Thorough Task

We submitted six runs to the Thorough task. In addition to our four standard
runs, we submitted

– TOPX CO Thorough all: a CO run that allowed all tags in the collection
instead of limiting the tags to article, section, and p

143

– TOPX CAS Thorough ex incr: a CAS run that included expanding terms us-
ing WordNet

Table 1 shows the results for our runs. It turns out that all CO runs outperform
the CAS runs that suffer from the strict evaluation of the target tag. Among
the CO runs, the run that allows all result tags is best; this is not surprising
as the other runs exclude many relevant results that have the ‘wrong’ tag. We
see a slight advantage for runs that include phrases and negations, and a slight
disadvantage for the run that expanded terms with WordNet. Overall, the per-
formance of TopX is good (with a peak rank of 20), taking into account the
limited amount of tuning that we did. Being a top-k engine, we expect that
TopX would, like last year, perform even better for early cutoff points; however,
they were unfortunately not measured this year.

run rank MAep

TOPX CO Thorough all 20 0.0253

TOPX CO Thorough ex 26 0.0190

TOPX CO Thorough baseline 32 0.0178

TOPX CAS Thorough ex 61 0.0103

TOPX CAS Thorough baseline 62 0.0101

TOPX CAS Thorough ex incr 75 0.0081

Table 1. Results for the Thorough Task

3.2 Focused Task

Our runs for the focused task were produced by postprocessing our AdHoc runs
to remove any overlap. For each such AdHoc run, we kept an element e if there
was no other element e′ from the same document in the run that had a higher
score than e and had a path that overlapped with e’s path. This simple, syntactic
postprocessing yielded good results (shown in Table 2). Especially for the early
cutoff points, TopX performed extremely well with peak ranks 3 and 4. Interest-
ingly, the CO run that considered phrases and negation did slightly better than
its counterpart without expensive predicates.

3.3 BestInContext Task

To produce the runs for the BestInContext task, we ran TopX in document
mode. This yielded a list of documents ordered by the highest score of any
element within the document, together with a list of elements and their scores
for each document. To compute the best entry point for a document, we simply
selected the element with highest score from each document and ordered them
by score. The results (Tables 3 and 4) show that this gave good results, with a
peak rank of 1.

144

run nxCG[5] nxCG[10] nxCG[25] nxCG[50]

TOPX CO Focused ex 0.3769 (3) 0.3154 (4) 0.2431 (10) 0.1916 (14)

TOPX CO Focused baseline 0.3723 (4) 0.3051 (10) 0.2432 (9) 0.1913 (15)

TOPX CAS Focused baseline 0.3397 (16) 0.2792 (21) 0.2017 (31) 0.1524 (39)

TOPX CAS Focused ex 0.3339 (20) 0.2790 (22) 0.1985 (33) 0.1501 (41)

TOPX CAS Focused ex incr 0.2909 (40) 0.2341 (50) 0.1640 (59) 0.1232 (59)

Table 2. Results for the Focused Task with the nxCG metric at different cutoffs (ranks
are in parentheses), with overlap=on

run A=0.1 A=1 A=10 A=100

TOPX-CO-BestInContext-baseline 0.1280 (22) 0.2237 (11) 0.3685 (5) 0.5715 (5)

TOPX-CO-BestInContext-exp 0.1189 (28) 0.2074 (20) 0.3451 (11) 0.5384 (11)

TOPX-CAS-BestInContext-baseline 0.0718 (54) 0.1361 (53) 0.2272 (53) 0.3780 (53)

TOPX-CAS-BestInContext-exp 0.0653 (57) 0.1254 (56) 0.2131 (57) 0.3594 (54)

Table 3. Results for the BestInContext Task with the BEPD metric (ranks are in
parentheses)

run A=0.1 A=1 A=10 A=100

TOPX-CO-BestInContext-exp 0.0260 (13) 0.0604 (7) 0.1241 (3) 0.2081 (1)

TOPX-CO-BestInContext-baseline 0.0258 (17) 0.0607 (5) 0.1231 (4) 0.2050 (3)

TOPX-CAS-BestInContext-exp 0.0163 (42) 0.0394 (38) 0.0764 (26) 0.1422 (29)

TOPX-CAS-BestInContext-baseline 0.0160 (44) 0.0388 (40) 0.0748 (33) 0.1380 (32)

Table 4. Results for the BestInContext Task with the EPRUM-BEP-Exh-
BEPDistance metric (ranks are in parentheses)

145

4 Structural Query Expansion

Our feedback framework aims at generating a content-and-structure query from a
keyword query, exploiting relevance feedback provided by a user for some results
of the keyword query. This section gives a very brief summary of our approach;
for a more detailed and formal description, see [8].

We consider the following classes of candidates for query expansion from an
element with known relevance:

– all terms of the element’s content (C candidates),
– all tag-term pairs of descendants of the element in its document (D candi-

dates),
– all tag-term pairs of ancestors of the element in its document (A candidates),

and
– all tag-term pairs of descendants of ancestors of the element in its document,

together with the ancestor’s tag (AD candidates).

To weight the different candidates c, we apply an extension of the well-known
Robertson-Sparck-Jones weight [5] to element-level retrieval in XML, applying
it to elements instead of documents:

wRSJ (c) = log
rc + 0.5

R − rc + 0.5
+ log

E − efc − R + rc + 0.5
efc − rc + 0.5

Here, for a candidate c, rc denotes the number of relevant elements which
contain the candidate c in their candidate set, R denotes the number of rele-
vant elements, E the number of elements in the collection, and efc the element
frequency of the candidate.

To select the candidates to expand the query, we use the Robertson Selection
Values (RSV) proposed by Robertson [4]. For a candidate c, its RSV has the
form RSV (c) = wRSJ (c) · (p − q), where p = rc/R is the estimated probability
of the candidate occurring in a relevant element’s candidate set and q is the
probability that it occurs in a nonrelevant element’s set. We ignore candidates
that occur only within the documents of elements with known relevance as they
have no potential to generate more relevant results outside these documents,
and we ignore candidates that contain a query term. We choose the top b of the
remaining candidates for query expansion (b is a configurable parameter).

Using these top-b candidates, we generate a content-and-structure query from
the original keyword query, where each additional constraint is weighted with the
normalized RSJ weight of its corresponding candidate (see [8]). The expansion
itself is actually rather straightforward; the generated query has the following
general structure:

//ancestor-tag[A+AD constraints]//*[keywords+C+D constraints]

As an example, if the original query was ”XML” and we selected

– the A candidate //ancestor::article[about(., IR)],

146

– the AD candidate //ancestor::article[about(.//bib, index)],
– the D candidate //descendant:p[about(., index)], and
– the C candidate about(., database),

the expanded query (omitting the weights) would be

//article[about(., IR) and about(.//bib, index)]//*[about(., XML)
and about (., database) and about(.//p, index)].

5 Feedback Task Results

INEX 2006 introduced a new relevance measure, specificity, that replaced the two
dimensions of relevance, exhaustivity and specificity, used before. This happened
mainly for two reasons: First, to make assessments easier, and second, because
correllation analyses had shown that comparing systems in the AdHoc track
yields a result when using specificity only that is sufficiently similar to the result
with specificity and exhaustivity.

However, this new measure does not reflect the relevance of an element from
a user’s point of view. It is unlikely that a user would greatly appreciate seeing a
single collectionlink element or, even worse, an isolated xlink:href attribute
in a result list. It is therefore questionable if specificity alone can be used for
automated feedback.

5.1 Evaluation of Feedback Runs

We discussed different evaluation modes in our paper at last INEX [7]. There is
still no common agreement on one mode that should give the ‘best’ results. We
shortly review the modes here and introduce a new mode, resColl-path.

– Simply comparing the results of the baseline run with the results generated
from feedback (we denote this as plain) is commonly considered as illegal, as
feedback includes the advantage of knowing some relevant results and hence
can yield a better performance.

– With rank freezing, the rank of results with know relevance is frozen, thus
assessing only the effect of reranking the results with unknown relevance.
We label this approach freezeTop as usually the top-k results are used for
feedback and hence frozen. This has been the standard evaluation mode for
the INEX relevance feedback task.

– With the residual collection technique, all XML elements with known rele-
vance must be removed from the collection before evaluation of the results
with feedback takes place. Depending on which elements are considered as
having known relevance, a variety of different evaluation techniques results:
• resColl-result: only the elements for which feedback is given are removed

from the collection,

147

• resColl-desc: the elements for which feedback is given and all their de-
scendants are removed from the collection,

• resColl-anc: the elements for which feedback is given and all their ances-
tors are removed from the collection,

• resColl-doc: for each element for which feedback is given, the whole doc-
ument is removed from the collection, and

• resColl-path: for each element for which feedback is given, the element
itself, its ancestors and its descendants are removed from the collection.

The most natural evaluation mode is resColl-path, as it removes all elements
for which the feedback algorithm has some knowledge about their potential rel-
evance. We evaluate our approach with all seven evaluation techniques in the
following section and try to find out if there are any differences.

5.2 Preliminary Results

We measured only MAP and precision at different cutoffs (the other measure-
ments will be part of the official evaluation). Due to time constraints, we consider
only the first 49 topics that have assessments (topics 289-339, excluding topics
299 and 307), runs with 100 elements, and feedback for the top-20 results of
our baseline run TOPX CO Thorough all with the Generalised quantization. Our
experiments use the top-10 candidates for feedback, where different classes of
candidates are considered. We tested the significance of our results with the
t-test and the Wilcoxon signed-rank test [6].

Due to time constraints, we could only consider a limited number of combi-
nations of candidate classes, see Table 5 for the results. Unlike our results from
last year with the IEEE collection, content-only feedback outperformed all other
combinations, and A and AD candidates alone often could not improve result
quality significantly. At this time, we do not have a well-founded explanation for
this behaviour. However, there are some major differences of the new Wikipedia
collection to the old IEEE collection:

– Wikipedia documents do not have a clear structure with front and back
matter. For the old IEEE collection, especially A and AD candidates could
exploit things like authors of a document, authors of a cited document, or
journal names.

– The one-dimensional relevance measure penalizes large elements towards the
root of a document. This is a natural disadvantage for using D candidates
that tend to add results near the root element.

– Our old experiments used only the Strict quantization where the best ele-
ments typically were sections or paragraphs. With the new relevance measure
and quantization, the best elements and attributes are small (like
collectionlink or xlink:href) which do not contribute many candidates
to the candidate pool. We will rerun the experiments with the Strict quan-
tization for feedback to see if this assumption is true.

148

evaluation baseline C D C+D A AD A+AD

plain 0.0188 0.0364 0.0328 0.0344 0.0187 0.0164 0.0228

freezeTop 0.0188 0.0284 0.0248 0.0256 0.0189 0.0181 0.0216

resColl-result 0.0108 0.0264 0.0212 0.0218 0.0106 0.0106 0.0171

resColl-anc 0.0101 0.0246 0.0194 0.0201 0.0102 0.0102 0.0169

resColl-desc 0.0049 0.0087 0.0078 0.0081 0.0048 0.0045 0.0056

resColl-doc 0.0041 0.0077 0.0067 0.0072 0.0040 0.0038 0.0048

resColl-path 0.0046 0.0085 0.0072 0.0079 0.0044 0.0043 0.0056

Table 5. MAP values for different configurations and different evaluation modes. Runs
shown in bold are significantly better than the baseline under the WSR test (p < 0.01),
runs shown in italics are significantly better than the baseline under the t-test (p <
0.01).

Our future work in this area will focus on using other measures of rele-
vance like the one proposed for HiXEval [3]. This may additionally pave the way
for feedback that exploits the granularity of results (e.g., to derive tags for a
keyword-only query). We will additionally examine how to choose a threshold
for the element frequency of candidates that are considered, and which other
candidate classes could be used.

References

1. H. Bast, D. Majumdar, M. Theobald, R. Schenkel, and G. Weikum. IO-Top-k:
Index-optimized top-k query processing. In VLDB, pages 475–486, 2006.

2. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
3. J. Pehcevski and J. A. Thom. Hixeval: Highlighting xml retrieval evaluation. In

INEX, pages 43–57, 2005.
4. S. Robertson. On term selection for query expansion. Journal of Documentation,

46:359–364, Dec. 1990.
5. S. Robertson and K. Sparck-Jones. Relevance weighting of search terms. Journal

of the American Society of Information Science, 27:129–146, May–June 1976.
6. J. Savoy. Statistical inference in retrieval effectiveness evaluation. Inf. Process.

Manage., 33(4):495–512, 1997.
7. R. Schenkel and M. Theobald. Relevance feedback for structural query expansion.

In INEX, pages 344–357, 2005.
8. R. Schenkel and M. Theobald. Structural feedback for keyword-based xml retrieval.

In ECIR, pages 326–337, 2006.
9. M. Theobald, R. Schenkel, and G. Weikum. Efficient and self-tuning incremental

query expansion for top-k query processing. In SIGIR, pages 242–249, 2005.
10. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine

for TopX search. In VLDB, pages 625–636, 2005.
11. M. Theobald, R. Schenkel, and G. Weikum. TopX & XXL @ INEX 2005. In INEX,

pages 282–295, 2005.
12. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with proba-

bilistic guarantees. In VLDB, pages 648–659, 2004.

149

Supervised and Semi-supervised Machine
Learning Ranking

Jean-Noël Vittaut and Patrick Gallinari

Laboratoire d’Informatique de Paris 6
8, rue du Capitaine Scott, F-75015 Paris, France

{vittaut, gallinari}@poleia.lip6.fr

Abstract. (draft) We present a Machine Learning based ranking model
which can automatically learn its parameters using a training set of la-
beled and unlabeled examples composed of queries and relevance judg-
ments on a subset of the document elements. Our model improves the
performance of a baseline Information Retrieval system by optimizing
a ranking loss criterion and combining scores computed from doxels
and from their local structural context. We analyze the performance
of our supervised and semi-supervised algorithms on CO-Focussed and
CO-Thourough tasks using a baseline model which is an adaptation of
Okapi to Structured Information Retrieval.

1 Introduction

Different studies and developments have been recently carried out on ranking al-
gorithms in the machine learning community. In the field of textual documents,
they have been successfully used to combine features or preferences relations
in tasks such as meta search [1] [2] [3], passage classification, automatic sum-
marization [4] and recently for the combination of different sources of evidence
in Information Retrieval (IR) [5]. One of the challenges of this paradigm is to
reduce the complexity of the algorithms which is in the general case quadratic
in the number of samples. This is why most real data applications of ranking are
based on two-classes problems. Nevertheless, some linear methods has been pro-
posed [3] [4] and under some conditions, fast rates of convergence are achieved
with this class of methods [6].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the doxel itself
and on its structural context. Ranking algorithms will learn to combine these
different features in an optimal way according to a specific loss function using
a set of examples. It is hoped that ranking algorithms may help to improve the
performance of existing techniques.

The semi-supervised paradigm has emerged already been used in classifica-
tion [?]. It has showed its efficiency on a class of tasks where there are only a
few labeled samples available. This is the case in SIR and more generally in IR:

150

there are very few labeled databases, and the labeling of relevant units for par-
ticular queries is time consuming. There is also tasks where only a few samples
are labeled such as relevance-feedback.

The paper is organized as follows, in section 2 we present the ranking model,
in section 3 we show how we adapted it to CO-Focussed and CO-Thorough tasks.
In section 4 we comment the results reached by our model and compare it to a
baseline Okapi method adapted for Structured Information Retrieval (SIR).

2 Ranking model

We present in this section a general model of ranking which can be adapted to
IR or SIR. The idea of the ranking algorithms proposed in the machine learning
community is to learn a total order on a set X , which allows to compare any
element pair in this set. Given this total order, we are able to order any subset
of X in a ranking list. For instance in IR, X can be the set of couples (document,
query), and the total order is the natural order on the document scores.

As for any machine learning technique, one needs a training set of labeled
examples in order to learn how to rank. This training set will consist in ordered
pairs of examples. This will provide a partial order on the elements of X . The
ranking algorithm will use this information to learn a total order on the elements
of X and after that will allow to rank new elements. For plain IR, the partial
ordering may be provided by human assessments on different documents for a
given query.

2.1 Notations

Let X be a set of elements with a partial order ≺ defined on it. This means that
some of the element pairs in X may be compared according to the ≺ relation.
For Structured Information retrieval X will be the set of couples (doxel, query)
for all doxels and queries in the document collection. This set is partially ordered
according to the existing relevance judgments for each query.

2.2 Ranking

Let f be a function from X to the set of real numbers. We can associate a total
order ≺T to f such that:

x ≺T x′ ⇔ f(x) < f(x′) . (1)

Clearly, learning the f function is the same as learning the total order. In
the following, we will extend the partial order ≺ to a total order ≺T , so we will
use the same notation for both relations.

An element of X will be represented by a real vector of features:

x = (x1, x2, ..., xd).

151

In our case, the features will be local scores computed on different contextual
elements of a doxel. In the following, f will be a linear combination of x’s features:

fω(x) =
d∑

j=1

ωjxj (2)

where ω = (ω1, ω2, ..., ωd) are the parameters of the combination to be learned.

Ranking loss. fω is said to respect x ≺ x′ if fω(x) < fω(x′). In this case,
couple (x, x′) is said to be well ordered by fω. The ranking loss [3] measures how
much fω respects ≺.

By definition, the ranking loss measures the number of mis-ordered couples
in X 2:

R(X , ω) =
∑

(x,x′)∈X 2

x≺x′

χ(x, x′) (3)

where χ(x, x′) = 1 if fω(x) > fω(x′) and 0 otherwise.
Ranking aims at learning ω for minimizing (3).

Exponential loss. In practice, this expression is not very useful since χ is not
differentiable, ranking algorithms use to optimize another loss criterion called
the exponential loss:

Re(X , ω) =
∑

(x,x′)∈X 2

x≺x′

efω(x)−fω(x′). (4)

If is straightforward that R(X , ω) ≤ Re(X , ω). (4) is differentiable and con-
vex, and then can be minimized using standard optimization techniques. Mini-
mizing (4) will allow to minimize R(X , ω).

We can compute a gradient descent. The components of the gradient of Re

are:
∂Re

∂ωk
(X , ω) =

∑
(x,x′)∈X 2

x≺x′

(xk − x′k)efω(x)−fω(x′). (5)

With no more hypothesis, the computation of (5) is in O(|X |2).

3 Application to CO tasks

3.1 Definitions

Let denote D is the set of doxels for all the documents in the collection and Q
the set of CO queries. X = Q×D is the set of elements we want to order.

We suppose that there exists a partial order ≺ on X = Q×D, this partial or-
der will reflect for some queries, the evidence we have about preferences between

152

doxels provided via manual assessments. Note that these relevance assessments
are only needed for a few queries and doxels in the collection. We consider here
the task which consists in producing a ranked list of doxels which answer the
query q ∈ Q. For that, we will train the ranking model to learn a total strict
order on X .

3.2 Vector Representation

Each element x ∈ X is represented by a vector (x1, x2, ..., xd) were xi represents
some feature which could be useful to order elements of X . Let denote L the
set of doxel types, which are defined according to the DTD of the document
collection: article, abstract, sections, paragraphs, lists...

We used the following combination:

fw(x) = ωl
1 + ωl

2Okapi(x) + ωl
3Okapi(parent(x)) + ωl

4Okapi(document(x))

where l is the node type of x and Okapi is the SIR adapted Okapi model [7]
described in [8]. This adaptation consists in using doxels rather than documents
for computing the term frequencies, and using as normalization factor for each
doxel, the mean size of the doxels with the same node type.

This combination take into account the information provided by the context
of the doxel and the structural information given by the node type of the doxel.

This combination leads to the following vector representation:

x =
(
(xl1

1 , xl1
2 , xl1

3 , xl1
4), (xl2

1 , xl2
2 , xl2

3 , xl2
4), ..., (xl|L|

1 , x
l|L|
2 , x

l|L|
3 , x

l|L|
4)

)
where |L| is the number of different doxel types in the collection.

In the above expression all vector components of the form (xli
1 , xli

2 , xli
3 , xli

4)
are equal to (0, 0, 0, 0) except for one where li is the doxel type of x which is
equal to (1, Okapi(x), Okapi(parent(x)), Okapi(document(x))).

3.3 Reduction of complexity

In this section, we use some properties of SIR in order to decrease the complexity
of the computation of (4) and (5).

Queries. Comparing elements from different queries has no sense. We can define
a partition X =

⋃
q∈Q

Xq, where

Xq = {x = (d, q′) ∈ X/q′ = q}

and we can rewrite (4):

Re(X , ω) =
∑
q∈Q

∑

(x,x′)∈Xq×Xq

x≺x′

efω(x)e−fω(x′)

 . (6)

153

Assessments. For each subset Xq, the preferences among doxels are expressed
according to a several discrete dimensions. We have:

- an information of exhaustivity, which measures how much a doxel answers
the totality of an information need (0 not exhaustive, ..., 3 fully exhaustive)

- an information of specificity, which measures how much a doxel answers only
the information need (0 not specific, ..., 3 means fully specific)

There is no preference between doxels sharing the same value of exhaustivity
and specificity.

An assessment is a couple (exhaustivity, specificity). Let denote A the set of
assessments and A(x) the assessment of element x. We can define a partition
Xq =

⋃
a∈A

X a
q , where

X a
q = {x ∈ Xq/A(x) = a}.

We can rewrite (6):

Re(X , ω) =
∑
q∈Q

∑
a∈A

 ∑

x∈Xa
q

efω(x)

 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

e−fω(x)

 . (7)

where X b
q ≺ X a

q means that the assessments of the elements of X a
q are better

than those of X b
q . An possible order between assessments is represented in figure

1.
The complexity for computing this expression is O(K · |Q| · |X |) whereas it is

O(|X |2) for (4) where K is the number of sets in the partition of X . The worst
case occurs when K = X .

E3S3

E3S2

E2S3

E3S1

E2S2

E1S3

E2S1

E1S2

E1S1 E0S0

Fig. 1. Graph representing the order between elements for a given query, according to
the two dimensional discrete scale of INEX. Doxels labeled E3S3 must be the highest
ranked, and doxels labeled E0S0 the lowest ranked.

154

3.4 Gradient descent

Since (7) is convex, we can use a gradient descent technique to minimize it. The
components of the gradient has the following form:

∂Re

∂ωk
(X , ω) =

∑
q∈Q

∑
a∈A

 ∑

x∈Xa
q

xkefω(x)

 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

e−fω(x)

+

 ∑
x∈Xa

q

efω(x)

 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

−xke−fω(x)

. (8)

The complexity for computing the gradient is the same (O(K · |Q| · |X |)) as
that of (7).

3.5 Incorporation of unlabeled samples

The natural way to incorporate an unlabeled sample y would be to compute all
probabilities P (y ≺ x) for x in X . But this method would be computationnaly
costly because we could not use property 7 to reduce the complexity since y is
not in a particular X i

k.
A better method is to affect y to only one X i

k, using a certain probability
of belonging. We say that a sample belongs to the group with which it has the
maximum probability of indifference:

P (y ∈ X i
k) = P ({y} ⊥ X i

k) =
∏

x∈X i
k

P (y ⊥ x) =
∏

x∈X i
k

P (y ≺ x)P (x ≺ y)

If we use the exponential ranking loss, we will choose the group X i
k which

minimize the ranking loss:

exp(sω(y))
∑

x∈X i
k

exp(−sω(x)) + exp(sω(−y))
∑

x∈X i
k

exp(sω(x)).

Note that is not ordinal regression because there is some groups (Xk’s) which
are each other indifferent and if we could know a priori if an unlabeled sample
belongs to one of this group. Even if our model produce a total order on X ,
there is some comparisons without sens (for instance, we see in section 3.3 that
comparing search results from different queries is none sense).

4 Experiments

4.1 Learning base

We used the Wikipedia collection with a small set of anotated queries (3) as a
learning base. We will comment the results.

155

4.2 Filtering

In CO-Focussed task, overlapping doxels were not allowed. In order to suppress
all overlapping elements from the lists computed by the ranking algorithm, we
used a strategy which consists in removing all elements which are overlapping
with an element ranked higher in the list.

As for Okapi model, we used the same strategy exept that biggest doxels
like articles or bdy’s were not allowed in the final ranking list to reach better
performance.

4.3 Results

We comment the results obtained with the nxCG official metric with generalized
quantization and overlap on and off which is more related to the ranking loss
criterion and the different levels of assessment we have used in our model.

CO-Focussed. We can see that the ranking algorithms perform better than
Okapi.

Table 1 and 2 show that the ranking models are always better than its baseline
Okapi model, and that is quite good to retrieve the most informative doxels in
the begining of the list.

Table 1. Rank of Okapi and ranking models among all participant submissions using
nxCG metric with generalised quantization and overlap on for CO-Focussed task

@5 @10 @25 @50

Ranking 2 1 2 3
Ranking semi-supervised 14 12 12 8
Okapi 50 39 37 32

Table 2. Rank of Okapi and ranking models among all participant submissions using
nxCG metric with generalised quantization and overlap off for CO-Focussed task

@5 @10 @25 @50

Ranking 1 1 4 8
Ranking semi-supervised 1 7 9 11
Okapi 49 39 40 33

156

CO-Thorough. Table 3 shows that the ranking model is always better than its
baseline Okapi model, and that is quite good to retrieve the most informative
doxels in the begining of the list. This can be explained by the expression of
the ranking loss which penalize more a irrelevant doxel when it is located in the
begining of the list.

Table 3. Rank of Okapi and ranking models among all participant submissions using
nxCG metric for CO-Thorough task

rank score

Ranking 18 0.0281
Ranking semi-supervised 18 0.0281
Okapi 27 0.0186

5 Conclusion

We have described our ranking model for CO tasks which relies on a combination
of scores from the Okapi model and takes into account the document structure.
This score combination is learned from a training set by a ranking algorithm.

For both tasks, the ranking algorithm has been able to increase by a large
amount the performance of the baseline Okapi with a very small set of labeled
examples. Ranking methods thus appear as a promising direction for improv-
ing SIR search engine performance. It remains to perform tests with additional
features (for example the scores of additional IR systems).

References

1. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In Jordan, M.I.,
Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems.
Volume 10., The MIT Press (1998)

2. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple
ranked retrieval systems. In: Research and Development in Information Retrieval.
(1994) 173–181

3. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. In: Proceedings of ICML-98, 15th International Conference
on Machine Learning. (1998)

4. Amini, M.R., Usunier, N., Gallinari, P.: Automatic text summarization based on
word-clusters and ranking algorithms. In: ECIR. (2005) 142–156

5. Craswell, N., Robertson, S., Zaragoza, H., Taylor, M.: Relevance weighting for query
independent evidence. In: SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference. (2005)

6. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk
minimization. In Auer, P., Meir, R., eds.: COLT. Volume 3559 of Lecture Notes in
Computer Science., Springer (2005) 1–15

157

7. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
TREC. In: Text REtrieval Conference. (1992) 21–30

8. Vittaut, J.N., Piwowarski, B., Gallinari, P.: An algebra for structured queries in
bayesian networks. In: Advances in XML Information Retrieval. Third Workshop
of the INitiative for the Evaluation of XML Retrieval. (2004)

158

PF/Tijah at INEX 2006

Thijs Westerveld1, Henning Rode2, Roel van Os2, Djoerd Hiemstra2, Georgina
Ramı́rez1, Vojkan Mihajlović2, and Arjen P. de Vries1

1 CWI, Amsterdam, The Netherlands
2 University of Twente, Enschede, The Netherlands

Abstract. CWI and Utwente collaborated again for INEX. This year,
we participated in the Ad Hoc and Multimedia tasks. For both tasks, we
relied on the pf/tijah system we developed for flexible information re-
trieval from structured document collections[1]. Pf/tijah integrates NEXI
based IR functionality with full XQuery support.
In the Ad Hoc track we focused on three aspects. First, we studied
whether element retrieval could do better than article retrieval. We ex-
pected article or full document retrieval to be competitive in this collec-
tion with relatively short and specific articles. Second, we experimented
with context weighting. Can we improve an element ranking based on
the elements’ context. We investigated if it helps to take the article con-
text into account as well as whether using the article’s title could leave
to an improvement. Third, we looked at approaches to identify good
entry-points in relevant articles for the AllInContext and BestInContext
tasks. For the AllInContext task, we ranked articles by either the max-
imum or the average score of its top 1500 elements. All these elements
are kept as good entry-points. For the BestInContext task, we ranked
articles by the sum of the scores of all its elements found in the top1500;
the first of these elements (in document order) was than submitted as
the best entry-point. This means, for this task, the number of retrieved
documents was limited by the number of different articles retrieved from
in the top 1500 elements, and thus typically much lower than 1500.
For the MMfragments task of the multimedia track. we limited our sys-
tem to return only fragments that contain at least one image that was
part of the multimedia collection. Apart from that, we did not do any
multimedia processing, and simply experimented with text based ap-
proaches. We extended the collection with the metadata from the MMim-
age collection; for each of the images in the MMfragments collection, we
included the text from the corresponding image in the MMimages collec-
tion inside the 

</figure>

Fig. 8. An emerging pattern found on the training set. This pattern, describing class
2879927 (“Portal:War/Categories”) has a support of 48 in its class and 0 for all other
classes.

In figure 9 and figure 10 the recall and precision values per class are plotted,
for both classifiers. In both cases the classes were sorted according to the highest
value for the ATR classifier. In almost every class the recall values for the ATR
classifier are better than the recall values for the NOATR classifier. However, in
three classes the recall value for the ATR classifier was lower than the recall val-
ues for the NOATR classifier. Hence, for some classes the inclusion of attributes
has a negative influence on the classification performance. Furthermore, there
are a couple of classes where both classifiers were unable to retrieve any docu-
ment belonging to that class. Especially classes that contained a small number of
documents suffered from this. It is interesting to note the large different in perfor-
mance between different classes, for example: the ATR classifier for class 148035
(“Portal:Art/Categories”) achieved a recall score of 0.262338 and a precision
score of 0.312677 while, for class 2257163 (“Portal:Pornography/Categories”)
a recall score of 0.944444 and a precision score of 0.924686 was achieved. In
order to accomplish a higher performance for the first class, we experimented

315

Classes

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

R
ec

al
l

recall values per class for ATR
recall values per class for NOATR

Fig. 9. The recall values per class, both for the experiments where we used the at-
tributes of the data and those where the attributes were ignored.

Classes

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
re

ci
si

on

precision values per class for ATR
precision values per class for NOATR

Fig. 10. The precision values per class, both for the experiments where we used the
attributes of the data and those where the attributes were ignored.

316

with lowering the support value for the class. Unfortunately, the additional pat-
terns did not result in better performance. This suggests, that in the current
framework, using only the structure of XML documents is insufficient for clas-
sification. Generally speaking, the precision values achieved are better for the
ATR classifier then for the NOATR classifier. The most likely explanation for
the fact that the NOATR classifier achieved a higher precision for fifteen classes
is that the recall achievement of this classifier are rather poor for this classes.
However, this does not hold for all classes, for example on class 1507239 (”Por-
tal:Aviation/Categories”) the NOATR classifier achieved higher scores both for
recall and precision. A closer investigation of the emerging patterns for this class
is needed to give a possible explanation.

5 Conclusion

In this work we presented FAT-CAT; an XML classification approach based on
frequent attribute trees, and compared these with a frequent tree approach. We
have shown that the inclusion of attributes improves the performance of the
classifier. Furthermore, we analyzed the added value of including attributes into
the classification process and describe weaknesses of the used approach.

Further research includes the combination of the current classification ap-
proach with more context oriented classification techniques, such as text mining.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499, 1994.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient
substructure discovery from large semi-structured data. In SIAM Symposium on
Discrete Algorithms, 2002.

3. R. Bayardo. Efficiently mining long patterns from databases. In A. T. Laura
and M. Haas, editors, SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, pages 85–93, 1998.

4. C. Borgelt. A decision tree plug-in for dataengine. In Proc. 6th European Congress
on Intelligent Techniques and Soft Computing, 1998.

5. Björn Bringmann and Albrecht Zimmermann. Tree2 - decision trees for tree struc-
tured data. In European Conference on Principles and Practice of Knowledge
Discovery in Databases, pages 46–58, 2005.

6. L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 2006.
7. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and

differences. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 43–52, 1999.

8. W. Geamsakul, T. Yoshida, K. Ohara, H. Motoda, H. Yokoi, and K. Takabayashi.
Constructing a decision tree for graph-structured data and its applications. Fun-
damenta Informaticae., 66(1-2):131–160, 2005.

9. J. De Knijf. FAT-miner: Mining frequent attribute trees. In SAC ’07: Proceedings
of the 2007 ACM symposium on Applied computing, 2007. to appear.

317

10. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 80–86, 1998.

11. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
12. K. Wang and H. Liu. Discovering structural association of semistructured data.

Knowledge and Data Engineering, 12(2):353–371, 2000.
13. M. J. Zaki. Efficiently mining frequent trees in a forest. In ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pages 71–80,
2002.

14. M. J. Zaki and C. C. Aggarwal. Xrules: an effective structural classifier for XML
data. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 316–325, 2003.

318

��� ��������� �	

��

����������� �� �	
 ���������� ���� ��� �����
��
������ �����

���� �� ��
����

���� ���
� �

������� ����	
����� ������ ��� ������� ���������

���� � ����	
��� �� ��
�� �

��������� �	 ���
	�� ��	 �
���	� �� �	�
���� �� ��� ������������ ���
��� �	�����
����
	� �����	��� ���� � �	����	� ��
�	� ��� ���	���
�	 �
����	 � ������	 �	�
���� ���
���� ��	
	 ��	 ������� �	��		�
����� ��� ��
�	� �����	��� �� �	�
�	� �
�� 	 ����	�� !����	 �
����
��
������� ��� �	 �	�
�	� ����� ��� ���
� �� ����� ��� ��

	��������
��
�	� �����	���� "
�� � ������	 �	�
���� ����� �� ��	�# ��	 ��
����
	
������� ���$
���	� ����
���� �����	 �� �����	��	�� %	��	 �	 �
����	
�� �
������ ���	� ����� ����	� �	�� ��
	�� ��
�� ������������� �	 �
��
���	 �	�
���� ��� ���	
	��	 �
��	��
	� ���� ��� �����	 ��� &�	 ���	�
�	'�	������ ������ ��	 ��
�	� ��� �����	�� � �
��	����� ��	 �����
�����	�� ���	 �	
 ���	� �	 �	�����
��	 ��	 	(��	�� �� ��
 ���	� ��
��� ��
����
	 ������� ���$�� �� �� ��
 $����	��	# ��	
	 �
	 �� ���	

���	�� 	� ���	 �� ����	 ��	�	 ���$��

! ������������

������������ ���� ���� ���� ������� � ���������� �������� ���� � �� ���
���� ����� ��������������� ������� ������ �������� ��� ����� �� ��������
� ��� ��������� ���� ��!���� ������	 ��������� � �������� �������� ���"���
����� ��������� �� ��������	 #�
 ���	 � � ������ ������	 $%�
 ���" �� �
�������� �������� �� � ������� &���� ��� ����� � ����� � ���� ��������' ���
� �������� �������� ���"��� ���� �������� &���� "� ��� �������� ��� ����� � �
�(���)� (��� � ��� ����'� *�������� ��������� ���� �� ��������	 ���������	
����	 �� ���� ����� � ��� ������ ������(��� ������� � ������ ������(�����

%�� +������ � ������������ �� ������� �� ��������������� ����, ��������
���� ��� �� ���� ��-����� ������ ��� ��� ����������� ������� .�� ����
������ �� ����(�� ��� � ����� ������� � ����� ��� ��������� *������ #�

��� ������� �� � �������� �� ������� ��������������� ������	 ��� ������ ���
�������� � #�
 �������� ���"��� ��-����� �%�� � ������� "��� �� ��-���
���� �� �������� � ��������� �� #�
 �������� ����� ��� ������� ������	 �
�����(������ ���"��� ��� ��-����� ������� ������ ��� � �� ������������

� &��� ��
$ ��� �����
�	� �� ��
� � ��	 �)& �
��
���	 �� ��	 *�
��	�� !�����
���# ���	
 ��	 �+)!+� ,	���
$ �� * �	��	��	# �)&�-..-�/.�001� &��� �����������
���
	�	��� ��	 �����
�2 ��	���

319

/�� ���� �� ��� ���� � #�
 ���������	 ��� ������� ���������� ��� �� ��"�
� ����"� ��(������ � ��� ������ �� $%�
 ����	 ���� ���� "��� �����(���
"� (���������� ��� ��������� ������ %��� ���� �� ��� ���� � $%�
 "����
��� ������ �� �������� ����� ��������	 ����� �� � ����� ������� � �������
0��������� ��������� ��� ��-����� $%�
 "�� ����� ��� ��+����� � �(�����
��� ��(� � ��((��� ���"��� ��� �(���)� .�� ����� ������ ��� ��� (����)���
����� ��+����� �� �� �((��������

��������� ��������� ��((����	 �� ���� � ��)�� �����(������� ���"��� ���
��-����� ������� � ������ � ��-����� ������ �� ���� � ��� (����� � �����(
�((�������� ��(������ ��� ��������� ��������������� ������� %��� (����� ���
���� ��������� �� ��� ����� �� ��� �������� ��� � � ������ ������ �� ���
������� ���������� �� ��-����� �������� ����� ��� ��������� *��"��	 ���
���� "��� ������ �� � (����� � ������ �����(������ ���"��� �����������
������� � �"���� � �������� ������ ��� ���������� ������� ������������
���������	 ���� #�
%� ����� ��� �����(������ ��� ��� ��(�� ��"�� � ���������
������	 �������� �(�������� ��� �����(������ ���"��� ������ �� ������� �
��������� � ��� (����� � ������� ���������� ��� ������ *�������� ���
������ � ����� ������������� ��� ��(���� ����� � ����������

%��� "�� "�� ����� �� �� ��� ������ � ��� �*��*
12/0# #�
 �������
������ ����������� %��� ��������� (�(���	 �� �� �������� � #�
 ������� ��
��� ��� ����������	 � ����� ��������� ��� ��������� ��((��� ����� %�� ��� �
���� ���� �� � ����� � �������� $%�
1!�� ������� � �� #�
 ��������
������ �� ��������� (���������

.� (�(�� ���� � ����� ��� ������������ ��� ����(���� %�� ��������
������ ������ � � �������� ��� (������ �� ��� ����� 0��� �������� ����(�� ��
���� � �� ��(�� ������� ��� ��� �����(����� ������ �������� %�� ������
"��� �������� ����� ��� ������������ ��� ����� ����(���� 2�(�� �������� ���
��� "��� ����������� ���������� � ���(�� "��� � ��������� �� ���� %�� ����
��� �(���)����� � ������� ��((���� �� ��(����� ���� "��� ��� �����(����
� � �������� ��� � ���������� ��������� %��� ���"� � ������� (������
"���� ��� ��(�� ������ �� �� ��(������� ����� � ����� "���� ���� ������ �� �
������� � ���� � ��(����� ��((��� ��� �� ��)��� &���� �� ��� ���� �� ����
$%�
 �������� �((��������'� 3������	 ��� (�(��� ����� ��� ��+����� �
(����� � ��� � ���������� �������� ��� ���� ���� "��� �� ���� ������ ����
��� ������ �����(���� � � ������������ ����(��

%�� ��������� ��((��� ���� "� ��� ������ �� ��������� �� ������ 4� 5��
������ �� �������� �� (��� 6 ��� ��(�������� (������� � �" ��-����� ����
"��� ����� ��� (�������� ��� ��������� �� ������ 7�

� ��������
 ������� �� �

��� ������	
���

%�� ��������� ��((��� ���� ��������� ��� (����� � �������� ������� ������
�������� ����� � ��� � ����(���� %�� ���� �� ���� �� � ��(������� ��������

� ����344 ���������������

320

(����� "���� ��(��� ��� ��(��� ��� ��������������� ��������� 2�(�� ���
������ ��� ��� ��� ��-����� ������ ��� ��� ���� ��-����� ������ ����
!�� ����	 "�������	 $%�
 � ��-����� #�
 �������� 5��(�� �������� ���
��(������ �� #�
� ����� ��� ��� � �������� ����(���	 ��� ��� �� � ����� ��
��������� (������� ���� � ������ ��� ��(�� ������� � ��� ���� �������

%�� ��������� ��((��� ���� ����(����� � ����� ������� � ���� �((��������
����,

 �������� ��	
 �������� ��� ��" $%�
 � ������������ �������� #�
�
0���(�� ������ ������� �����	 ����	 "��������� �����	 ����� �(���)� �����
&�����	 �����	 �����	 ���'�

 ������� �� ��	 ����
 �������� ��� ��� �������� ��������� �� "���
(���� � #�
�

 ����� �������� ����������
 �������� ��� !�� ����	 ����� ����������
����	 � ��� ���� ����� ������� ����� &��� ���' � #�
�

�	
� �� * ����	 �� �	� ���	 �
������� &��� �� � ���	 �� %&�� �� ���)�
����
	
�������� ,��	� ��� �	
	���	��	�# ���	
�	�# ����
	��	� ��� ���	��

������ 8 ����������� �� ����(�� � #�
 � #�
 ��������� *� ��� �� ����
�� ���� ���(�� ����(�� ��� ��������� ��((��� ���� ������� ���� ��-����� ����
� ���������� �������������	 ��� �����������	 ��� ������� ��� ��((������	
��� ���(��������� %���� ������ ��� ���� ����� ���������� ����������	 ���
��������� ������� ������ ���� � ����� ����� "��� ���(��� � � �%��

��� ���������
���

��������� ��((��� ������� �� ����������� d ∈ Din ��� �� #�
 �������
d∗ ∈ Dout "���� Din �� ��� ��� � (������ ��(�� �������� ��� Dout �� ��� ���
� (������ ��(�� ��������� �� ����(��	 Din �� ��� ��� � ��� �������� ����
��� ����� ����� �� � �����(�� �(���)� #�
 ������� �(���)� �%��� *� ��������
����	 � ���� (������ � ��� � (��� {(di, d

∗
i)}i∈[1,N]

"���� N �� ��� ������ �
����(���	 di �� �� ��(�� ������� �� Din ��� d∗i �� ��� �����(����� ��(��
������� �� Dout�

321

* ��������� ��((��� ���� �� � ������� fθ : Din → Dout ���� ��(� ��(��
�������� ��� ������ ��������� %�� +������ � � ��������� ��((��� ��� ��
�������� "��� � ���� ��((���� ������������ %��� ������� �� � �������������
������� ���"��� ��(�� �������� , ∆ : Dout × Dout → [0, 1]� �� �����
"��� (����� �" ����
������� �� ��� ��)����� ��� (��������� θ ���� ������ �
��� ��(������ ���� � ��� �������� ���,

θ∗ = argmin
θ

1
N

N∑

i=1

∆(fθ(di), d∗i) &8'

��������� ��((��� ����� ���� � ���� "��� �" ��9� ��:�������� �����	
���� ���� � ��((�� � ����� ������� � ������������� %�� ������ fθ ���� ����
�� ��(������� ����� � ��(���� ����� %�� ���� ��:����� �� ������� � ���
�� � � Dout "���� �� ��(������� �� ��� ������ � ��������� * ���� (�����
����� ���� ��(������ � ��� ��(�� �(��� ������������ %�� ����� ������ �� ����
��(� � (����� �� � ��� ������� (��������� ������+��� �� ���� � �:�������
��(��� ��� �(��� � (������ �������� �� ��� ������� ������������ (�����
��������� ����	 ��� ��(������ � ��� ��������� ���(�� � ���� ���� ���� �������
(��������� ��� �� ���� � �������� ������� ;8<�

" �����
� ���
�

5�� "�� � ����� ��� ��(������ � ��� ��������� ��((��� ����	 �� � ����(��
�� ��� ���(��� ���(������� 2� ���� � ����(���� ����	 "� (�(�� � ����
��� ���������� (����� � ��������� ��((���� %�� "��� ��((��� �� ����(���
��� � ��+����� � ���� ������� ���(�� %�� ��((��� �� ���)���� �� ��������� ���
��(�� ���� ��� ������ �� ������� �� ���� � ����� %�� ��������� ��((��� ���
��(���� ���� � ��� ������ ��+����� � ����� ��������� 2� ���� � ���� ����
������� (�����	 "� ���� � ��� ������������� ������ �������� ������� &����'
�����"��� %��� �����"�� ���"� �� ����(�� ��� ��������� ��((��� ���
��� ���������� (���������� ������ ������ �� �� (������ � ��� "��� ��"�
=�����������
������� &=
' ��������� ;4< "���� ����� ��� �������� (������

��� ��
�������
�� ������ �������� �������

����� ������� �������� &���' ;6< (����� � ������������ �����"�� ��
�������� ��+������� �������������� (������� %��� ��� ���� �� � ������� � ���
���	 ��������� ������	 �������� �����	 ������� ��� �� �������������� *�
� �(����� ���� � ����	 "� ������� �� ���� (�(�� ������������� ����� �������
������� 3���� ���������� ��� ����	 "�)��� ����!� ��������� ��� �������
������� � ������

* ���� �� � ��(�� (S, A, δ(., .), r(., .)) "���� S �� ��� ����� �(���	 A �� ���
����� �(���	 δ,S ×A → S �� ��� ��������� ������� ��� R,S → � �� ��� ��"���
�������� *� ��� ���� ��� (����� �� �� � ����� ����� s ∈ S� 2� ���� ����� s �����
��� ������� ������ �� A ��� "���� ��� ���� ���� ����� �� � ����� s ��� ��

322

����� a	 ��� ��������� ������� ��)��� ��� ���� ����� δ(s, a)� %�� ���� ����� �
��"��� r(s) �� ���� ����� s �������� * ������� ����� �� ������ � ������� * �����
π �� � ������� ���� ��(� ������ � ����� (������������ π(s, a) ∈ [0, 1] ������
��� (��������� � ������ ����� a �� ����� s�
������� ��������� �����(� �)��
� (���� ���� ������ �� ���������� ��"��� ��� ��� ����� � ��� (������

.� ��" �" �" � ���� ��������� ��((��� �� � ����� ������ 4 �����
�� ����(�� � ���� �� ����� %�� ���� (���� � �� ���� ���,

 %�� ��(�� ������� �� (������� ��� (�� ���� .� ����� ni ��� ��(��
������� ��� "��� ����� i� 2� ��� ���� � �� $%�
1#�
 �����	 ���
���� ni ��� ��� ����� � ��� ����� 2� ��� ���� � !�� ��������� ����	 ���
���� ni ��� ��� ���� ���������

 .��� (�������� ��(�� ��� ni	 ��� ����� ������� ��� (������ ��(�� ����
���� �����(����� � ��(�� ���� n1, . . . , ni−1�

 �� ���� ��(�� ���	 ����� ��� �" (������ ���� � ������, ���(���� ���	
� ��� �� � ������ ��" ���� �� ��� (������ ��(�� ��������

 0��� ������� �� ����� � ��"��� ���� ���� ��� ��� � ��� ��"���� �����(���
� ��� ��������� ��((��� ����

.� �" (������ ��� ������ � ��� ��������� ��((��� �����

�
�
�� * ����� ������� ��� ��(�� ������� d	 ��� ����� � ��� ������� ��(��
��� t ��� ��� ������� ��(�� ������� d̂t� %�� ������� ��(�� ������� d̂1

������� � ������ ���, ��� #�
 ��� 0��� ����� �����(��� � � ��-�����
(������ ��(�� �������� *� ���� ���� ���(��� ���� ��� � ���� � ������� ��
��(�� ��� nt� *�� ��(�� ���� ���� ���� (������� "��� t > ‖d‖� 2� ���� ����	
��� ����� ��)��� ��� ������� ��� ��(���� ��(�� �������� .� ��� ������
����� s⊥ ��� ��� �����(����� ��(�� ������� d̂� d̂ �� ��� (�������� ���� ��
�� ��������� ��((��� �����

��
���� 2� � ����� ����� s	 ��� ���� ��� � ���� "��� � � "��� ��(�� ���
nt� %�� ���� ��� ���� ���"��� ��� ���� ��� ��� ������	
��� ����������

������� ���� ����� ��� ������ ���(�� �������� "��� ��� ���� ��(�� ����
2� ���� ���� nt "��� �� �((��� �� ��� ��(�� �������� ������	��� �� ����
� ������ ��� ������ � nt ��� � ��� �� � ������ ��" ���� �� ��� ��(���

��� ��)��� ��� ��+����� � ���� ��� ��� �� ��� � ��� ������ ��� ����
�� ��������� ��������� ��)��� "���� ��� ��" ���� "��� �� �������� � ���
�������� ����� %��� ��� � ������ �� ���� ������� � ��� �� ���� �� ;7< �� ���
������� �������� (������ ����� %�� ��-������ "��� (������ �� ���� �� ���������
��((���	 "� ���" � ���" ��(�� ���� ��� � ������ ��� ���� � ��� ������
������ ��� ������������� 2� ���� � ������ ��� ������ � (������ ������	
��� �������� ��������� &���� �%� � #�
 ������' ��� �� ���� � ���������

��� ��� ����������

� &��� ��
��	�	
 ���
���	 �� ��� ��	 ���� �	'�	��	� ���� �	
	 ���	
�	� �� �	��� ���	
�� ��	 �
������ �	��

323

�	
� �� &��� 5��
	 �� �� 	 ����	 �� 6�6�� &�	 ����	� ��

	����� �� ��
���� ������
�
		�� &�	 ������� ����	 7�� ��	 �	��8 �� ��	 ����	 ���� ��	 	��� �����	�� 7��	 %&��
���	8� ,��	� �� ��	
���� �
	 ���	����� ������ �����	���� &�	 	��	� �
	 ��	 �������	
�������� �� ���� 6�6�# �	 5
�� �����	 �� ������ ��
 ��	 5
�� ����� ���	 7���	 �'��
	
���	8# ��� ��	� �����	 �� ������ ��

	�������� �� ��	 �	���� ����� ���	 7
	� �'��
	
�	��8�

324

������
���� %�� ��������� ������� ���������� ��� ��(�� ��� ����� t	 �((����
��� ����� a � ��� ������� (������ ��(�� ������� ��� ������� ��� ���������
������

�������
������� ��������� �����(� � ������ � ��� ���������� ��"��� ���
��� ����� � ��� (������ %������� "� ���� � ������ ��"��� �������� ����
���� ������ ��� ���������� ��"��� �����(��� � ������ ��� ��� ��� �������
∆(d, d̂)� .� (�(�� �" ��"��� �������� "���� ���� ���� (�(����� 2� ��� ����
(���� ����	 ��� ��"��� �� ��� ����� ��� ��� ��(�� ������� ��)������� 5��
��"��� �� ���� �� ��� ������ ����(� ���)��� ���� 2�)��� ������	 ��� ��"��� ��
��� �������� ��� ���"��� ��� ��(�� ������� ��� ��� ���� �������,

r1(st) =

{
−∆(d̂, d∗) �� st �� �)��� �����,

0 ����"����

%�� ���������� ��"��� � r1 ��,

R1(s1, . . . , s‖d‖, s⊥) =
‖d‖∑

i=1

r1(si) + r1(s⊥)

= r1(s⊥)

= −∆(d̂, d∗)

2� ���� � ���(�������� ����������	 "� ��� �������� � ��"��� ���� �� ��)���
� ��� ������� 2� ���� ���� ��� ����� ���� ��������� d̂t−1 ��� d̂t �� ����� ��"���

r2(st) =

{
−∆(d̂1, d

∗) �� t = 1,

−∆(d̂t, d
∗) + ∆(d̂t−1, d

∗) ����"����

%�� ���������� ��"��� � r2 ��,

R2(s1, . . . , s‖d‖, s⊥) =
‖d‖∑

i=1

r2(si) + r2(s⊥)

= −∆(d̂1, d
∗) + ∆(d̂1, d

∗) − ∆(d̂2, d
∗) . . .

. . . + ∆(ˆd‖d‖, d∗) − ∆(d̂, d∗)

= −∆(d̂, d∗)

2� �� ���� ����� ���� ������ ��� ��� ���������� ��"��� R1 � R2 �� �+��������
� ������ ��� ��� ����(�� ��� � ��� ��������� ��((��� ����� /���� ����
�� ��"��� �������� ��� ��� ��������� "��� ��� ����� ��(�� ������� d∗ ��
��"�� %��� ����� ���� ��� ��"��� ��� �� �� ��(���� � ��� ������� ����
*������ ���� �� ������� �� ���� ���� �� �� � (�����, �������� ���� ��)�����
� (���� ���� ������ �� ��� ���������� ��"��� � ��� �������� ���� 5��� ���
(���� �� ������� �� ��� �� ���� � ��� ������� ��� "����� ��� ��"��� ���������

325

��� ������������
 ��������

����� ������� �������� ��� �� ����� ����� "��� ��"� ������������ ������
��� ���������� %���� ��������� ����� ��� (��������� θ � � (���� πθ ���� ����
πθ ������ �� ��� ��(����� ���������� ��"���� .� ��� ���������� �� ������� �
������������� (���� �� �� ������� (������ * ���(�� "�� � ���� ���� (������
�� � ��� �� ������������ �������� ���� ����� ���� (������ ����� a �� � �����
����� s� ��� (�������� "� ��)�� � ������� Q : S×A → � "���� Qθ(s, a) �� ���
��(������� � ��� ���������� ��"��� ���� "��� �� ������ �� ������ a �� �����
s� %�� ������������� (���� �� ��)��� �� ����� � ��� Q �������,

πθ(s, a) =

{
1 �� a = argmaxa′ Qθ(s, a′)
0 ����"����

%�� Q ������� �� ������� ��� ��� (������ ��(�� �������� ��� ��� (������
������ � �� ���>� �� ����� �� �� � �� � ����� �� ����(��� 2� ���� �� �((���������
?���� ����� ������� �((�������� �� �� ������ �������� ���� ;@<� * ���(�� ���
�:����� ������ �� � ��� ������ �((��������,

Qθ(s, a) =< θ, φ(s, a) >

"���� φ(s, a) �� � �������� ������(��� � ��� ����������� (���	 θ �� � ����� �
"������ ��� < ., . > �� ��� ��������� �� (������ φ(s, a) �� � ����� ���� 9�����
��������� ��� ������� ����� ��� ��� ����� "� "��� � ��������� ���� ��-�����
��(����������� φ ��� �� ����� .� ��" �� ����� 8 ��� ��(� � �������� "� ����
����� %�� �� � n � ��� ������� ������ �������� ��!������ ��� �������� ���� ���
��� (��������� � �� ����� θ ������� �� "����� (�� ������� ��������� ��
φ(s, a)�

������� "��� ��"� ��������� ����� �� �������� ��� (��������� θ	 ��� A�

�������	 �����&B'	 �����&λ'� 2� �� ��(�������� "� ���� ���� �����&B'� 3���!�
��� ���� �� � ����������� ������ θ ���� ���� Qθ(st, at) �((�������� ��� ���
� ��� ��������� ��"��� r(st+1) ��� ��� ���� ���������� ��(����� ��"���
Qθ(st+1, at+1)� *����� ��� ����� ���"��� �� ε������� (����, "��� (���������
ε ��� (���� ����� � ����� ��(������ �����	 ��� "��� (��������� 1 − ε ��
����� ��� ����� ������ ��� Q(s, a)� ��� ;4< �� ��� ��������

��� ��	��!�
"

2� ���� � (����� ��������� ��� ���� ��� � �������� ��� Q(s, a) ������ ��
���� ����� s �� ������� %��� ����� �� ��� ��������� ��(������ O(‖d‖∗‖Âs‖) "����
‖Âs‖ �����(��� � ��� ���� ������ � (������ ������ �� ���� ����� s� %���
��(������ �� ���� �"�� ���� ��� O(‖d‖3 ∗ ‖Âs‖) ��(������ � ��� ���������
������� (��������� ���� ��������� (��������� 2�������� �� ���� ��������� �
����� ������� ��������������

326

�$�
���
��

#�� ����� ��� ��	���

.� (������ ���� ��(�������� (������� �� ��� ������ � ��� 2/0# ���������
��((��� ���������� %�� ��������� ������ � �" ��(��� %��)��� �� �� ���
2/0# ��(�� "���� �� ��(��� � 84B8C �������)� �������� �� #�
 ������ 0���
������� ���� ��� � 9����� &8D (������ 9������'� %�� �������� ��� �����
�� �" �������, � !�� ��������� ������ ��� ��� #�
 ������� %�� ���������
��((��� ���� ���� �� ��������� ��� #�
 ��������� ����� ��� ��� ���� ��������
�� ��(��� %�� �������� ��� ����� �� ��� ����� ����� %�� ����� ��(�� ��
���� � 86EB ���� ������(���� ��������� �� ����� �������, �" ��-����� $%�

������� ��� �� �������� #�
 ������� %��� �����(��� � � ������� "����
�" ��-����� "������� ���� � �� ��((�� �� � (����)��� �������� �������
%�� ������������ �������� ��� ��((������ ��� ��� ��� �������

#�� ���
$���% &��� �$��
��� ��� '���$�
��� ����$���

&�	 �	���� ��
� �� ��	 ����� ���	 �� ���	 �� ���	
 ���	 �	��	
� ���
�	 �
	 �
	����� � ���	 ���� ���	� �����

&�	 5
�� ��
� �� ��	 ����� ���	 �� ���	 �� ��	 ���	
 ���	 �	��	
 ������	� � ���	
 ���	 �	��	
� ���
�	 �
	 �
	����� � ���	 ���� ���	� �����

&�	 5
�� ��
� �� ��	 ����� ���	 �� ���	 �� ��	 ���	
 ���	 �	��	
 ������	� � ������ �	��	
� ���
��	 ���	 �	 �
	 �
	����� ������� � ������� ���	�

&�	 5
�� ��
� �� � ����� ���
�	 �
	 �
	����� � ���	 ����� ������� � ������

&�	 ����� ���	 �������� �	��		� / ��� 9. ��
�� ���
�	 �
	 �
	����� � ���	 �� �	���� -�

&�	 ����� ���	 ��
	��2� ��� �� 	
 ���
�	 �
	 �
	����� � ���	 ����� ������� � ������	�

&�	 ����� ���	 ��� ��� 	� ��� �	 �
	 �$������ ���

&�	 5
�� ��
� �� ��	 ����� ���	 �� � ����� ��� �	 �
	 �$������ ���� ���	�

���

���� ��)��	 	 ����	� �� �	���
	� �� φ(s, a) ����� :����� �	��
��	 ��	 ��

	�� ����	
s ��� ��	 ������ a� &�	�	 �	���
	� �
	 ������ ����
 �	���
	� 7�� 0, 18 ���
	�� ����	�
�	���
	� �
	 ���� �������	� &�	 �	���
	� �
	 �	�	
��	� �� � ������
��	� ��3 � �	���
	
�� ������	
	� ��� ���	 �� �� ���	
�	� ���	 �� ��	 �	�
���� �����

%�� ���� ���� � �(���� �������� ��(���������� φ(s, a) � ��� ����� s ���
����� a &��� ������ 6'� %���� 8 ����� ��� ����(��� � ��� �������� "� ���� �����
%���� �������� 9����� �������� ��(���� � ��� ������� ����� ��� ��(���� � ���
������� ������ &��� ������� � ���
��� ��� ��������� (���������� ��(������

327

� ��� ��(��	 "� ���� ���� ��� ���� �� ������ �������� ��������� 0���
��(�� �� �(��� �� �" (����, @BF �� �������� ��� @BF �� ��������

%�� ����������� ∆(d̂, d∗) �� ����� � � �8 ���� ���� ��!���� ��� (�(����

� ���� �������� ���"��� d̂ ��� d∗� %�� ���� �� ��(���� �� ��� ���"���
"��,

8� 3���� ��� ��� � ��� �������� � ��� �" ��(���� ����� %���� �� �� �������
(�� ��� � ��� �������

4� ��(��� ������ ��� (������� � ��� ��������� %" �������� ��� ���������
�- ���� ���� ��� ���� �����	 ��� ���� ���� &�� ���� ����'	 ��� ��� ����
�������� ����� &�� �������� ����'�

6� ��(��� ��� �8 ����, F1 = 2∗Recall∗Precision
Recall+Precision �

7� ∆(d̂, d∗) = 1 − F1(d̂, d∗)

%��� ������� �����(��� � ��� ����� �8 ���� ���� �� ���)��� � /������

������� (������ ��� �� �� �������� ��-����� ����� ��� ���� ���"� �� � ���"
������ ���� � ��� ��(�� �������� 2� ���� � ��������� ��� ���� �����������
�(� ��� ��������	 "� ��� (����� ��� (��������� � �������� ��� ��� ����
��(�� "��� � �8 ���� ������� ���� �F	 �� � ���"��� BF ��� 8BBF�

#�� ���$�
�

 �� �!��������� ��� ����� ������ ��" #� $��� �����"� �	�����" � ���� ��� ��

���� ������� ���� "�%����� �������� ����� ������� �� �$� &�� �������� �����

������� #��� 	� ������	�� ��" ��������" �� �$� '()& �����$�� �� �����	�� ��

�������

% &
���
� '���

������� �((������ � ��������� ������� ������������ ���� ���� ��(����
������� ��� ��������� ������ ����� � ������� ������������� � ���� ������
������ � ����������� ������+���� * ��9���� � ���� ��� ������� ��� ����������
������� ��������� ��� � �� ��(��� ������ ����� 0��� ���� ����������
��������� �� ���� �� � ������� "�� ��� ��� ������ ��(��� ��� � ��" ������
����� ����������(�� ���� � ���� ������� ���� � ���� �(���)� ����������� �������
�((������ � ������� ������������ ��� ������� ������� � �� ����������
��� ���� � � �� ��(� � ����� 3������	 ��� (�(��� ������+��� � �� �����
� ����� ����������

2� ��� �������� �������� �������� � ������������� ���� ����������
G ��"� �� ��$��� ����$�� G ��� ���� � ��9� ������ �� ���� ������
* ������ ������ ��� �����" � ����� �((������ ��� �� ���� �� ;H<� ;C< ���
������� �� � ��� ��� ��(���� �((���� "���� ��� ������ �������	 �A

��� #�
 ����� %�� �������� ���� �� ��������� �� � ��(������� �����������
������)����� (������ .���� ���� ����� � ��� �������� �������� ��� ��
���(���	 ����� ��(�� ��� ��(������ ��-����� ��� ��� ������� ��(�� ���� ��

328

��� 2= ��������, ��� �������� G ���� #�
 ��� G ���(�� ���������������
��������� ���� �� ��������� �������� ��� ��� ���� ���� ������� ��� ��� ����
���� ���� �� ������� ��������I ������� ���� ������ �((���� �� ���� ��(���
.��� �������� ��(��)����� ��� ����� � � (���� � ��������� �� ����� �
����� ��� �����(����� ���� ������� ���� ������� ������� �((���� ��� �� ���
���� ���������� ������� ��������� ��((���	 ��� ������ ������������ "��� ���
��������� ��������� ����	 "���� ���� �� ������������ ���������� ��������� �
�(���)�� ������� ���1� �������� ��� ��" ���� ��� ��� �������� ��� $%�

(����� =����� "��� �� ����)��� ;D< ���� ��� ����������� ��� ���� � �������
��������� ��������� ��� �������� ���"��� ���������)�����

%�� ��������� ��((��� ���� (�(��� ���� �� ������� � ���� �������

������� ����� � ��� ����������� ��-����� ������ &;E<	 ;8B<' ���� (�(���
� ��� ������� �������� ��������� ���� (����������� ������ ���� ��������
&����' � �������� ��� �������� ��������� � ��������� 0���� ��(�������� ;8<
��"�� ���� ��� ��(������ � ���� �������� ��������� �� � ���� ���� ���� ����
�� �� ���� � ����� ��(�� ���� 2/0#� %�� "�� ������ � ��� �� ;88<� %���
������� ��� $%�
 � #�
 ������� �������� (������ %��� ���� ��� �
����� �� (������ ���� ������� ��+������ ��� � � ������� ����(� ������)��
�� ��������� ���� � ���������

� ����� ���

.� ���� ��������� � ������� ���� �� ��((��� ����������� ������� ��(���
��������� �� � ������ ���������� ������ %��� ���� ������ ��� ������������
��� ����(��� � ��(�� ��� ������ ������� (����� 2� �� ����� � � ��" �������
��� � ��� ��������� ��((��� (����� ����� � ������������� ����� �������
��������� %��� ��������� ���"� �� � ���� "��� � ����� ������� � ����� �����
��� ��� ��� �������� ���������� � � ������ ��������� ��� !�� ��������
� ��� ��((��� � #�
 ��������� �� � ������ ������� %�� ���� (������
���� ��� ������ "��� "��� ����� ���������� .� ���� ��"� ��� �:������ � �"
���� "��� ����� ����� ������

&
(
�
��

9� 6	��	
# ��# �����	��$�# ;�# ;������
�# ��3 6����	�� ��
����
	 �������� ��
 �	��
	
��	�	��� ��
��
�� ��3)�;�< -..=� ��
$����#)�	(�� 7-..=8

-�)�����# <�# >�
��# +�3 <	����
�	�	�� �	�
����3 �� ���
��������� ��& �
	�� 79??18
@� %���
�# <�+�3 6����� �
��
������ ��� ��
$�� �
��	��	�� &	������� �
	���

���	# !���
���	# ���������	��� 79?�.8
=� !������# ��# <��
$# >�3 ���
	�	���� ��
���� ���� ��	 �	
�	��
�� ����
����� ��3

�
��		����� �� ��	 =-�� �		���� �� ��	 +���������� ��
 !������������ �����������
7+!�2.=8# ���� A����	# >�
�	����#)���� 7-..=8 999B991

/� C�)�# +� ;� >�
��# ����>�# ��# 6���3 %������$ �� �	�
���� ��� +��
� ����	
6����� �
��
������� ���	D)���# �,!�# ������������ 7-..=8

�� 6���# +�# %��	�# +�E�3)	������ ���	�
�����
	�	�
�� �� ��	 �������	 ��������3
+ �
�	� ��
�	� +� ����F��	#)�	���� ����	 ��)	������ ���	�
����� 7-../8

329

0� 6���# +�# 6�������# ��# %��	�# +�3 �	�
���� �� ����� ��	 ���	��� �� ���� ���
�	�3
+ �������
��	� ���
����� ������� �	�
���� ��7@8 7-..@8 -0?B@.9

1� !���G# ��*�# ����	# <�C�3 >��������
	�������� �	�
���� �� ����	
� ��������

��	� ��
 ����
������ 	 �
������� C� ����� �	�
�� <	�� � 7-..@8 900B-9.

?� E��������# ��# &����# "���3)��������� �
��������� ���	
	��	 �� �	 � �������	
��
����
	� ����� �	�
�� ��7-8 7-...8 999B9@0

9.� !�������$��# >�# "��	��	
# C�3)��	
���	� �	�
���� ��
 ��	 �	��� �����	�� ����	
�
����� ��3 6��*�� 2.=# +!� �
	�� 7-..=8 --.B--1

99� !�������$��# >�# "��	��	
C�3 + �
����������� �	�
���� �	���� ��
 �� ����������
�� �����	���� ��3 �C!+�� 7-../8

330

Clustering XML Documents by Structural Similarity with
PCXSS

Tien Tran, Richi Nayak and Kerry Raymond

Faculty of Information Technology
Queensland University of Technology

Brisbane, Australia
r.nayak@qut.edu.au

Abstract. This paper reports on the results and experiments performed
on the INEX 2006 Document Mining Challenge Corpuses with the
PCXSS clustering method. The PCXSS method is an incremental
clustering method that computes the similarity between a new XML
document and existing clusters, instead of computing similarity between
each pair of documents. We conducted the clustering task on the INEX
and Wikipedia data sets.

1. Introduction

With the emergence of XML standard, XML documents are widely accepted by many
industries such as business, education, entertainment and government [1]. With the
continuous growth of XML data, many issues concerning with the management of
large XML data sources have also arisen. For efficient data management and retrieval,
a possible solution is to group XML documents based on their structure and content.
The clustering of XML documents facilitates in a number of applications such as
improved information retrieval, document classification analysis, structure summary,
improved query processing [2, 3] and so on.

The clustering process categorizes the XML data based on a similarity
measure without the prior knowledge on the taxonomy [4]. Clustering techniques have
frequently been used to group similar database objects and text data. However,
clustering of XML documents is more challenging because a XML document has a
hierarchical structure and there exist relationships between element objects at various
levels.

We propose to use the PCXSS algorithm that is developed to deal with XML
schemas to cluster the INEX 2006 Document Mining Challenge Corpuses [5]. Our
philosophy is based on the fact that the XML is mainly used to represent instances in
semi-structural format. The clustering algorithm should group the documents that
share a similar structure. For example, the documents from the publication domain
would have different structure from the documents from the movie domain. The
structure of the documents play prominent role in grouping similar documents [6]. The

331

actual instances may not play an important role. The inclusion of instances (the
contents within the tag) rather incurs an additional computing cost.

The PCXSS (Progressively Clustering XML by Structural Similarity)
algorithm employs a global criterion function CPSim (common path coefficient) that
measures the similarity between an XML data and existing clusters of XML data,
instead of computing the pair-wise similarity between two data objects. The PCXSS,
originally developed for the purpose of clustering of heterogeneous XML schemas, has
been modified and applied to cluster the INEX 2006 XML documents by considering
only the structure of XML documents.

2. The PCXSS method: overview

Figure 1 illustrates a high level view of the PCXSS method. The pre-processing phase
decomposes every XML schema into structured path information called node paths
(each path contains the node properties from the root node to the leaf node). The first
stage of the clustering phase i.e. ‘Structure Matching’ measures the structural
similarity between node paths of a data object and clusters. This stage determines the
similarity between two objects according to the nodes they share common in their
paths. The output of the structure matching stage is common path coefficients (CPSim)
between the data object and all existing clusters. The second stage of clustering phase
groups the data object into an existing cluster with which it has the maximum CPSim
or assigns it to a new cluster.

A number of modifications have been made to the PCXSS method in order to
experiment with INEX 2006 corpus. Firstly, the pre-processing phase extracts the
structure of every XML documents into X_Paths where only the name of the element
is considered in this case. Other information such as data type and constraints are
ignored. Secondly, the structure matching of the clustering phase measures only the
structural similarity between X_Paths of a document and clusters, where semantic of a
tag name is not considered. We have shown elsewhere that semantics of a tag name
(such as person vs. people) in XML documents do not make any significant
contribution while determining similarity between two XML documents/schemas [6].

Figure 1. The PCXSS methodology

3. PCXSS Phase 1: Pre-processing

The entire documents in the INEX collection or in the Wikipedia collection conform to
only one DTD schema. As a result, we do not require to perform pre-processing of tag

332

names while inferring the structure of the documents. Only a simple pre-processing
step has been applied on the XML documents. The XML documents are first parsed
and modelled as the labelled tree (Figure 2). The attribute of an element is modelled
exactly the same way as its child elements. The trees are then decomposed into
X_Paths to represent the structure of these XML documents.

An X_Path is formally defined as an ordered sequence of tag names from a
root to a leaf node which includes hierarchical structure. An XML document consists
of many X_Path sequences and the order of X_Paths is ignored because each X_Path
is considered as an individual item in an XML document structure. Moreover,
duplicated X_Paths in a document structure are eliminated. Duplicated paths are
redundant information for structure’s presentation as the occurrence of elements is not
important for clustering in most cases. After the pre-processing of XML documents, it
is presented as a collection of distinct X_Paths.

Figure 2. An XML Document (article) & its tree representation

4. PCXSS Phase 2: Clustering

The clustering phase consists of two stages: structure matching and clustering. At
structure matching stage, it measures the similarity between a XML document and
existing clusters. This stage generates a similarity value called CPSim (Common Path
Similarity) between an XML document and a cluster. CPSim is then used in the
clustering stage to group the XML document into an existing cluster with which it has
the maximum CPSim, or assigns it to a new cluster if the clustering number has not yet
exceeded and CPSim does not exceed the clustering threshold.

4.1 Structure Matching Stage

Each node in a node path of a document is matched with the node in a node path of the
clusters, and then aggregated to form the node path (or structure) similarity.

333

4.1.1 Node matching. The node matching measures the similarity between the nodes
in node paths by considering name similarity (Nsim), data type similarity (Tsim) and
constraints similarity (Csim). A weight is assigned by the user to each of the
similarities computed. For example, the similarity value for the element’s name is
assigned with the highest weight since the name is one of the crucial information in
determining the node similarity. Below is the formula to compute node similarity
(NodeSim).

)max,(min*),(*),(* 3212211 OccurOccurCsimwtypetypeTsimwnamenameNsimwNodeSim

The above formula of NodeSim is applied when performing the clustering of XML
schemas. For the clustering of XML documents, the NodeSim is calculated by
measuring the similarity between the elements in X_Paths by considering only the
name similarity (Nsim), where a weight of 1 is assigned. The data type similarity
(Tsim) and constraints similarity (Csim) are ignored. The INEX 2006 documents
follow the same schema, neither semantic nor syntactic similarity computation is
needed on the element name matching. Consequently, the NodeSim value between
element names is equal to 1 if they have an identical name else it is assigned with a 0.

4.1.2 Structure similarity. The frequency of common nodes appearing in two XML
structures is not sufficient to measure the similarity of XML data. XML is different
from other web documents such as HTML or text because it contains the hierarchical
structure and relationship between elements. The order of where the element resides in
the structure is important in determining the structural similarity between the XML
trees and existing clusters.

The structural similarity between two XML schemas is measured by first
finding the common nodes between two paths and then finding the common paths
between two trees. The structure matching process in PCXSS is advanced by starting
at leaf node between two paths to detect more similar elements within structures.

Common nodes finding. The degree of similarity between two node paths, defined as
path similarity coefficient (Psim), is measured by considering the common nodes
coefficient (CNC) between two paths. The CNC is the sum of NodeSim of the nodes
between two paths P1 and P2 as shown in Figure 6. Psim of paths, P1 and P2 is the
maximum similarity of the two CNC functions (P1 to P2 and P2 to P1) with respect to
the maximum number of node in both paths, P1 and P2, defined as:

),(
),(),,((),(

21

1221
21 PPMax

PPCNCPPCNCMaxPPPsim

334

Function:),(21 PPCNC

Sim:= 0; for each in 1P

 while j not end of
2P length

 if(NodeSim(in , jn)) > threshold (defined by user)

 Sim += NodeSim(in , jn)
 j--
 break from ‘While’ loop
 else
 j--
 end if
 end while
end for
return Sim

Figure 6. The CNC algorithm

Figure 7. Example of CNC matching

Figure 7 shows an example of traversing through the CNC function. The
Path1 1/2/3/4/5/6 contains 6 element names showed as numbers for convenience. The
Path 2 1/2/4/5/6 contains 5 elements. The following steps are iterated when calculating
the CNC function:

1. Start at the leaf element of both paths (j=5, i=4). If the NodeSim coefficient of the
leaf elements exceeds a threshold (a match) then increase Sim (Figure 5) with the
NodeSim value and go to step 2 else go to step 3.

2. Move both paths to the next level (j--, i--) and start element matching at this level.
If the NodeSim coefficient of these elements exceeds a threshold (a match) then
increase Sim with the NodeSim value and repeat step 2 else go to step 3.

3. Move only path 1 to the next level (j--) then start element matching in the original
level of path 2 (i) to the new element of path 1.

335

It is important to note that CNC(P1, P2) is not equal to CNC(P2,P1). If the

leaf element from P1 can not be found in P2 then no further matching requires. In some
cases, one path may be a sub path of the other. If P2 is a sub path of P1, and if the leaf
element can not be found in P2 then the CNC(P1, P2) returns 0 however CNC(P2, P1)
will returns a value according to the matching. Thus, both CNC(P1, P2) and
CNC(P2,P1) are computed and the maximum of the two is used to measure the degree
of similarity between the two paths.

The Psim value is monitored by a path similarity threshold. The threshold
determines whether the two node paths are similar. If the Psim of two node paths
exceeds the path similarity threshold then it is used to determine the structural
similarity between the trees and existing clusters.

Common paths finding. PCXSS measures common paths (1) between two trees and (2)
between a tree and a cluster.
Tree to Tree Matching: The tree to tree matching is the matching between a new tree
and a cluster that contains only one tree. This is defined as:

),(

)),(max(
),(

21

1

||

1
21

1 2

TPathTPathMax

PPPsim
TreeTreeCPSim

TPath

i

TPath

j
ji

where CPSim is the common path similarity between two XML trees. The CPSim of
trees, Tree1 and Tree2 is the sum of the best path similar coefficient (Psim) of paths, Pi
and Pj with respect to the maximum number of paths, |TPath1| and |TPath2| of trees,
Tree1 and Tree2, respectively. The clustering process in PCXSS works on the
assumption that only one path from Tree1 matches with one path in Tree2. Thus, it
only selects the maximum Psim between each pair of paths of Tree1 and Tree2.

Tree to Cluster Matching: The tree to cluster matching is the matching between a new
tree and the common paths in a cluster. The common paths are the similar paths that
are shared among the trees within the cluster (normally a cluster must contain at least 2
or more trees in the cluster to have the common paths or else the tree to tree matching
is required). Initially, the common paths are derived in the tree to tree matching. Then
every time a new tree is assigned to the cluster, the similar paths are added to the
cluster if paths are not already in the cluster. The tree to cluster matching is defined as:

|)(|

)),(max(
),(

||

1

||

1

TPathMax

PPPsim
ClusterTreeCPSim

TPath

i

CPath

j
ji

Similar to the tree to tree matching, CPSim between a tree and a cluster is the sum of
the best Psim of paths, Pi and Pj w. r. t. the number of paths, |TPath| in the Tree.

4.2 Clustering Stage

336

PCXSS is an incremental clustering method. It first starts off with no cluster. When a
new tree comes in, it is assigned to a new cluster. When the next tree comes in, CPSim
is computed between the tree and the existing cluster. If CPSim exceeds the clustering
threshold and the cluster has the largest CPSim with the tree then the tree is assigned to
that cluster else it is assigned to a new cluster. The node paths of the tree that are used
to compute the CPSim are then added to the cluster. The node paths in the cluster are
referred to as common paths. The common paths in the cluster are then used to
measure the CPSim between the cluster and new trees. Since the common paths
(instead of all the node paths of the trees held within a cluster) are used to compute
CPSim with new trees, the computation time reduces significantly. In addition, the
cluster contains only the distinct common paths (duplicate paths are removed from the
cluster). Figure 8 shows the algorithm for the clustering process in more detail.

1. assign the first tree T1 to a new cluster C1
2. while tree file has more
3. read the next tree (i.e. a set of node paths,

denoted by Ti);
4. while cluster C has more
5. if Cj contains only one tree, Tj
6. compute sim =CPSim(Ti, Tj);
7. else compute sim=CPSim(Ti, Cj) end if
8. end while
9. if Max(sim) >= clustering threshold
10. assign Ti to Cj ;
11. add node paths to Cj ;
12. else assign Ti to new cluster end if
13. end while

Figure 8. PCXSS clustering process

5. Experiment and Discussion

Test data. The data used in the experiments are the INEX corpus and Wikipedia
corpus from the INEX XML Mining Challenge 2006. Table 1 shows the properties
of the experimental corpus.

Test Data No. of Classes No. of XML documents Size
(MB)

INEX 18 6054 259
Wikipedia 60 75047 530

Table 1. Test Data Sets

Evaluation methods. For INEX XML Mining Challenge 2006, the clustering
solutions are measured using f1-measures: micro-average f1 and macro-average f1.
These measures are used to evaluate multi-labeled classification (more than 2 labels).
To understand how micro-average f1 and macro-average f1 are measured, it is
necessary to revisit the precision, recall and f1-measure which are widely used in

337

information retrieval. For example, for binary classification, the precision (p), recall (r)
and f1-measure are defined as below:

BAAp / CAAr / rpprf /21

Where A stands for the number of positive samples which are predicted as positive, B
stands for the number of negative samples which are predicted as positive, and C
stands for the number of positive samples which are predicted as negative. In a multi-
label classification, summing up A,B,C over all binary classification respectively and
then f1 is calculated based on them is called micro-average f1 measure. The macro-
average f1 is determined when the f1 value is averaged over all binary classification.
Micro and macro f1 measures are applied directly on multi-label classification
solutions for evaluation. Refer to paper [7], for more information on f1 measure for
multi-label classification. However, to measure the clustering solutions, the clustering
solutions are first converted to classification solutions before calculating the micro and
macro f1 measures.

Experiments and Results. We submitted the 3 results for INEX test data and 1 result
for Wikipedia test data to the INEX XML Mining track 2006. The varied submissions
were made due to results obtained by setting different thresholds during experiments.
The results of the clustering solutions performed by PCXSS are shown in Table 2.

Clustering Threshold Categories
Discovery

Micro F1 Macro
F1

0.5 (INEX) 7 0.072944 0.039460
0.7 (INEX) 6 0.088004 0.044307
0.8 (INEX) 7 0.088824 0.044641
0.3 (Wikipedia) 20 0.120460 0.037375

Table 2. Results from INEX XML Mining track 2006

The F1 measure of the clustering solutions obtained with PCXSS on INEX and
Wikipedia test data are low. We examined the results and our experimental setups to
find out why the clustering solutions have low performance. Firstly, we used the
different thresholds to see whether does the threshold value makes any difference in
finding the clusters. The results do not seem to improve much.

Secondly, we eliminate the attributes of the element to see whether it can
improve the clustering solutions. The results in Table 3 show that the removals of the
attributes of the elements can improve the clustering results a little using the same
thresholds. However, the results are not yet satisfactory. The reason of the
improvement may be that the attributes contained by the Wikipedia and INEX
corpuses do not play an importance in understanding the structure of the XML
document itself.

Clustering Threshold Categories
Discovery

Micro F1 Macro F1

0.5 (INEX) 7 0.149186 0.090254
0.7 (INEX) 10 0.150553 0.096187

338

0.8 (INEX) 10 0.150553 0.096187
Table 3. Clustering solution without the attributes

The clustering solution using clustering threshold of 0.8 in table 2 is further analysed.
This clustering solution has discovered 7 out of 18 true categories. Table 4 below
shows the mapping between the 18 clusters that have been generated by PCXSS to its
true category. It shows that the documents in category 3 are widely spread out over
the 18 clusters that have been discovered by PCXSS. This may happen due to many
reasons. Firstly the XML documents from same category (in this case 3) are not
grouped together into one cluster by PCXSS due to the difference in structure and size.
The PCXSS algorithm mainly derives the solution based on structure similarity.
Moreover, the instances play a significant role in measuring the similarity between
INEX documents when documents conform to only one document. We have ignored
the instances in our experiments.

18 Clusters Discover by PCXSS True Category
11 11
10 3
13 17
12 13
15 3
14 3
17 5
16 3
18 14
1 3
3 13
2 3
5 3
4 3
7 3
6 12
9 3
8 5

Table 3. Mapping of 18 Clusters Discover by PCXSS to its True Category

To achieve some success, we tried another modification to the clustering
agorithm itself. The principle is to increase the time performance while maintaining
the accuracy. Since the accuracy obtained is not very high, we decided to measure the
similarity betweeen a XML document with the first tree in the cluster without using
common paths. We only consider the first tree that formed the cluster instead of
comparing with all the common paths (of all trees) that are included in the cluster. The
results of the INEX corpus are shown in Table 5.

The clustering solutions achieve little better results than the Table 3. It shows
that the clustering on common paths on these kinds of data may not be sufficient
enough without the instance. Moreover, there was significant time saving to reach to

339

the clustering solutions that compared a new tree with only one tree in the cluster. This
area will further be analysed in future work.

Clustering
Threshold

Categories
Discovery

Micro F1 Macro F1

0.8 (INEX) 9 0.179525 0.115392
0.9 (INEX) 9 0.174740 0.118604
0.3 (INEX) 6 0.103753 0.051152
0.4 (INEX) 7 0.126618 0.086362
0.4 (Wikipedia) 18 0.121828 0.050716
0.7 (Wikipedia) 10 0.125178 0.033793
0.6 (Wikipedia) 13 0.126537 0.034368
Table 3. Results from the modification of the clustering algorithm in PCXSS

Based on these experiments, it can be ascertained that the measuring the
structure similarity in the documents derived from the same schema do not show any
advantage. The usual methods of matrix computations considering only the instances
of documents such as vector space, neural networks may have been appropriate here.

The structure overlapping in the documents of the corpus due to the belonging
in the same schema and the difference in the sizes and structures within the documents
from the same category also play the negative role in clustering.

6. Conclusions and future work

This paper presented the experience of applying the PCXSS clustering method
considering only the structure of the XML document to cluster the data of the INEX
2006 document mining challenge. Our aim was to explore whether the structure of the
XML documents overplay the instances (contents within tags) of the documents for the
clustering task. The experiments show that the structure matching employed by
PCXSS alone can not be applied well on the INEX documents especially when the
XML documents conform to only one schema.

The development of the PCXSS clustering algorithm originally meant to
cluster the heterogeneous schemas. To use the PCXSS on XML documents may need a
number of extensions such as the learning of instance and data type for a more
efficient clustering solution.

7. References

1. Bray, T., et al., Extensible Markup Language (XML) 1.0 (Third Edition) W3C
Recommendation. 2004.

340

2. Boukottaya, A. and C. Vanoirbeek. Schema matching for transforming
structured documents. in 2005 ACM symposium on Document engineering.
November 02-04, 2005. Bristol, United Kingdom.

3. Nayak, R., R. Witt, and A. Tonev. Data Mining and XML documents. in The
2002 International Workshop on the Web and Database (WebDB 2002). June
24-27 2002.

4. Han, J. and M. Kamber, Data Mining: Concepts and Techiques. 2001, San
Diego, USA: Morgan Kaufmann.

5. Nayak, R. and T. Tran, A Progressive Clustering Algorithm to Group the
XML Data by Structural and Semantic Similarity. To be published in
"International Journal of Pattern Recognition and Artifical Intelligence" (Data
of Acceptance: 9th Oct), 2006.

6. Nayak, R. Investigating Semantic Measures in XML Clustering. in The 2006
IEEE/ACM International Conference on Web Intelligence. Dec, 2006. Hong
Kong.

7. Luo, X. and N. Zincir-Heywood. Evaluation of two systems on multi-class
multi-label document classification. in ISMIS05. 2005. New York, USA.

341

Classifying XML Documents Based on

Structure/Content Similarity

Guangming Xing, Zhonghang Xia

Department of Computer Science, Western Kentucky University, Bowling Green, KY
42104, guangming.xing@wku.edu

Abstract. In this paper, we present a framework for classifying XML
documents based on structure/content similarity between XML docu-
ments. Firstly, an algorithm is proposed for computing the edit distance
between an ordered labeled tree and a regular hedge grammar. The new
edit distance gives a more precise measure for structural similarity than
existing distance metrics in the literature. Secondly, we study schema
extraction from XML documents, and an effective solution based on min-
imum length description (MLD) principle is given. Our schema extrac-
tion method allows trade off between schema simplicity and preciseness
based on the user’s specification. Thirdly, classification XML documents
based on the edit distance is discussed. The efficacy and efficiency of our
methodology have been tested using the data sets from XML Mining
Challenge.

1 Motivation and Literature Review

The widely use of XML in different business applications results in large vol-
ume of heterogeneous data: XML documents conforming to different schemata.
An XML document is defined by markup tags from a Document Type Defini-

tion (DTD), forming a tree structure. Classifying XML documents based on the
tree structure and the content is an important problem and is crucial for XML
document storage and retrieval [11].

Various methods [10, 4] have been proposed and implemented for XML doc-
ument classification, and most of them use tree edit distance as a measure of
similarity. Tree edit distance [9, 6] is defined as the cost of the sequence of edit
operations to transform one tree to another. It offers a very precise measure for
document similarity between two documents. However, tree edit distance is not
a good measure for structural similarity, as edit distance between two documents
can be large (one large document and one small document) while they have very
similar structure (conform to the same schema). To overcome this problem, vari-
ous methods have been proposed. For example, Jagadish [10] proposed a method
using graft and prune to improve the efficiency of computing edit distance and
accuracy of classification. More recently, Dalamagas [4] studied XML document
classification/clustering using tree summaries and top-down tree edit distance.
Both methods offers very high classification/clustering accuracy when the set
of documents conforms to the DTDs whose length of the repeat patterns is 1.

342

However, the performance of these two methods get significantly degraded when
the underlying DTDs have more complicated patterns. Although the tree sum-
mary method significantly reduces the time complexity for computing the tree
edit distance, the structures of the trees may not be preserved by the structural
summaries. For example, consider the example in Fig. 1: the two trees on the
left side have different structures, but they share the same structural summary
based on the methods in [4].

tree summary

a b c a b c a b c a a a b b c c c

entry entry entry

a b c

Fig. 1. Trees of Different Structure with the Same Structural Summary

As the structure of an XML document is defined by a schema, it is natural
to study the distance between XML documents and schemata and use it as a
similarity measure for document classification.

The remainder of this paper is organized as follows. Tree representation of
an XML document, normalized regular hedge grammar(NRHG), tree edit op-
erations, and the algorithm to compute the edit distance between a tree and
a NRHG is presented in Section 2. The algorithm to find a schema that can
generate a set of XML documents is covered in Section 3. Section 4 covers the
use of the edit distance between an XML document and a schema in classifying
XML documents. The implementation and experimental studies are presented
and discussed in section 5, and the conclusion remarks are given in section 6.

2 XML Documents, Schemata and Edit Distances

An XML document can be represented as a node labeled ordered tree. Ordered

means the order among the siblings is significant, while labeled means that each
node in the tree is labeled with a symbol from a predefined alphabet.

Document Type Definition (DTD) has been widely used to specify the schemata
of XML documents. An XML document conforms to a DTD if it can be gener-
ated by the DTD. A DTD can also be viewed as a tree, with the edges labeled
with the cardinality of the elements. But a DTD may be recursive, some nodes
may lead to a infinite path (it is a DAG instead of a tree in this case). There-
fore, instead of working on a DTD directly, we convert it to a normalized regular
hedge grammar (NRHG) [2], which can defined as follows:

Definition 1. A NRHG is a 5-tuple (Σ, V
T
, V

F
, P, s), where:

1. Σ is a finite set of terminals,

2. V
T

is a finite set of tree variables,

3. V
F

is a finite set of forest variables,

343

4. P is a set of production rules, each of which takes one of the four forms:
(a) v

t
→ x, where v

t
is a tree variable in V

T
, and x is a terminal in Σ.

(b) v
t
→ a〈v

f
〉, where v

t
is a tree variable in V

T
, a is a terminal in Σ and

v
f

is a forest variable in V
F
.

(c) v
f
→ v

t
, where v

f
is a forest variable and v

t
is a tree variable.

(d) v
f
→ v

t
v

′

f

, where v
f

and v
′

f

are forest variables and v
t
is a tree variable.

5. s ∈ V
T

is the starting symbol, which defines the tree pattern that can be

generated by this grammar.

In the above definition, the terminals are used to label the nodes (both leaf
and internal) in a tree; the tree variables are grammar symbols to generate trees;
and the forest variables are used to generate forests (string of tree variables).
Rule (a) is used to generate a tree with a single node, rule (b) is used to put a
new node as a new root of the forest that is generated by forest variable, rule (c)
is the base case to generate a tree for a forest, and rule (d) is used to concatenate
a tree with a forest to form a new forest.

An ordered labeled tree is said to conform to a NRHG if it can be generated
by the grammar. When a tree doesn’t conform to a NRHG, it can be transformed
by a sequence of edit operations such that the result tree conforms to the NRHG.
In this paper, we use the same types editing operations for ordered labeled forests
as described in [6]: (1) insert as a leaf, (2) delete a leaf, and (3) replace. A cost
is assigned to each of these operations. The edit distance between a tree and a

NRHG is the minimum cost of a sequence of edit operations transforming the
tree to conform to the grammar.

2.1 Matching Algorithms

In this section, we present the recursion to calculate the distance between an
ordered labeled tree and a NRHG.
Notations:

To identify the nodes in a tree, the nodes are numbered based on post-order
traversal. Given a tree T , and an integer i:

– t[i] represents the node of T whose post-order is i;
– t[i] refers to the label of the node t[i] when there is no confusion;
– T [i] represents the sub-tree rooted at node t[i];
– F [i] represents the sub-forest obtained by deleting t[i] from the tree T [i];
– p(i) refers to the order of the parent node of t[i];
– n(i) refers to the order of the right sibling of t[i];
– F

s
[i] denotes the suffix-forest obtained by deleting the left sibling(s) of t[i]

from F [p(i)].

δ(T
t
, T

s
): is the minimum cost to transform T

s
to T

t
;

δ(F
t
, F

s
): is the minimum cost to transform the source forest F

s
to the target

forest F
t
;

For v
t
∈ V

T
in a NRHG, and a tree t, define:

C[v
t
, T [i]] = min{δ(t, T [i]) : v

t
→∗ t}.

344

Similarly, for v
f
∈ V

F
in a NRHG, and a forest f , define:

C[v
f
, F [i]] = min{δ(f, F [i]) : v

f
→∗ f}.

C[v
t
, T [i]] is the minimum cost to transform T [i] such that it can be generated

by v
t
, and C[v

f
, F

s
[i]] is the minimum cost to transform F

s
[i] such that it can be

generated by v
f
. C[v

t
, T [i]] and C[v

f
, F

s
[i]] can be computed using the following

recursions.

Theorem 1. For each v
t
∈ V

T
, and each sub-tree T [i]:

C[v
t
, T [i]] = min

v
t
→ x δ(x, T [i]) (1)

v
t
→ a〈v

f
〉 δ(λ, T [i]) + C[v

t
, λ] (2)

v
t
→ a〈v

f
〉 C[v

f
, F [i]] + δ(a, t[i]) (3)

and for each v
f
∈ V

F
and sub-forest F

s
[i] = T [i]F

s
[n(i)]:

C[v
f
, F

s
[i]] = min

v
f
→ v

t
C[v

t
, T [i]] + δ(λ, F

s
[n(i)]) (4)

v
f
→ v

t
δ(λ, T [i]) + C[v

f
, F

s
[n(i)]] (5)

v
f
→ v

t
v

′

f

C[v
t
, T [i]] + C[v

′

f

, F
s
[n(i)]] (6)

v
f
→ v

t
v

′

f

δ(λ, T [i]) + C[v
f
, F

s
[n(i)]] (7)

v
f
→ v

t
v

′

f

C[v
t
, λ] + C[v

′

f

, F
s
[i]] (8)

v
f
→ v

′

f

C[v
′

f

, F
s
[i]] (9)

Due to the space limit, the correctness of the above theorem is omitted from
this paper.

The above algorithm can be implemented using straight forward dynamic
programming except that C[v

f
, F

s
[i]] may depend on itself based on rule (7)

and (8). Just as argued in [8], the value C[v
f
, F

s
[i]] may potentially depend on

itself. This precludes direct use of dynamic programming. We may use the same
modification given in [8] to circumvent this problem.

Firstly, the other three cases that lead to smaller cases of the problem can
be computed by the following formula:

known[v
f
, F

s
[i]] = min

v
f
→ v

t
C[v

t
, T [i]] + δ(λ, F

s
[n(i)]) (4)

δ(λ, T [i]) + C[v
f
, F

s
[n(i)]] (5)

v
f
→ v

t
v

′

f

C[v
t
, T [i]] + C[v

′

f

, F
s
[n(i)]] (6)

Secondly, we can use the following procedure to compute the edit distance
between each grammar variable and sub-tree.

1: procedure ComputeMatrix(G, F)
2: Input: NRHG G and F that is post-order traversed
3: Output: C[n..F [1.. | T |]] matrix
4. // C

t
[|V

T
|][n]: cost matrix holds C[v

t
, T [i]]

5. // C
f
[|V

F
|][n]: cost matrix holds C[v

f
, F

s
[i]]

6. for i = 1 to |V
T
| do

7. for j = 1 to n do

8. C
t
[i, j] =∞

9. for i = 1 to |V
F
| do

10. for j = 1 to n do

345

11. C
t
[i, j] =∞

12.for1 s = 0 to n do

13. for2 all tree T [i] of size s do

14. for3 all v
t
∈ V

T
do

15. calculate C[v
t
, T [i]]

16. for2 all forest F
s
[i] of size s do

17. for3 all v
f
∈ V

F
do

18. C[v
f
, F

s
[i]] = known[v

f
, F

s
[i]]

19. H ← heap of C[v
f
, F

s
[i]]

20. while not H.empty()
21. C[v

f
,F

s
[i]] ← H.extract min

22. for each v
′

f

→ v
t
v

f

23. C[v
′

f

, F
s
[i]] ← min {C[v

′

f

, F
s
[i]], δ(v

t
, λ) +C[v

′

f

, F
s
[i]]}

24. H.decrease(C[v
′

f

, F
s
[i]])

25. endFor

26. endWhile

For a tree with n nodes and a grammar with p rules, there are O(n × p)
C[v

t
, T [i]] to compute, and it take constant time to compute each C[v

t
, T [i]].

Similarly, there are O(n×p) C[v
f
, F

s
[i]] to compute. For each F

s
[i], it takes p log p

time to compute C[v
f
, F

s
[i]] for all the forest variables. So the above procedure

can be completed in O(n×p log p) time. In most applications, p tends to be much
smaller than the number of nodes in a documents. Theoretical analysis shows
that our method is more efficient than computing the edit distance between two
trees, which will be verified by experimental studies in Section 5.

3 Schema Extraction from XML Documents

Most classification/clustering methods for structured documents rely on pair-
wise distances. In order to use the edit distance defined above for document
classification/clustering, the first task is to extract the underlying schema from
the XML documents. The problem can be formulated as: Given a collection of
XML documents {d1, d2, ..., dn

}, find a schema s, such that d1, d2, ..., d
n

are
document instances that can be generated by schema s.

As the definition of an element in a schema is independent of the definitions of
other elements, and only restricts the sequence of subelements (the attributes are
omitted in this paper) nested within the element. Therefore, the schema extrac-
tion can be simplified as inferring a regular expression R (right linear grammar
or nondeterministic finite automata) from a collection of input sequences I with
the following restrictions:

– R is concise, i.e., the inferred expression is simple and small in size;
– R is general enough to accept sequences that are similar to those in I;
– R is precise enough to exclude sequences not similar to those in I.

346

Inferring regular expressions from a set of strings has been studied in [13,
12]. One novel contribution in Xtract is the introduction of Minimum Length
Description (MLD) to rank candidate expressions. In general, the MLD principle
states that the best grammar (schema) to infer from a set of data is the one that
minimizes the sum of:

1. The length of the grammar L
g
, and

2. The length of the data L
d

when encoded with the grammar.

The overall goal is to minimize L = L
g

+ L
d
.

In our system, we use a similar approach as introduced in Xtract: Candidate
regular expressions are extracted based on the analysis of the repeat patterns
appearing in the input sequences. The candidate regular expressions are then
ranked using MLD principle. We have made the following improvements over
Xtract:

1. The frequencies of the children sequences are considered in our system and
the system may intentionally pick some victims that are not covered by the
inferred regular expressions. The victims are those sequences that appears
very infrequently. This feature helps to minimize the negative effects of noise
data in classification/clustering.

2. In our system, the relative weight between the definition and description can
be dynamically adjusted, which can be used to tune the performance of our
system. The overall goal in our system is to minimize L = λL

g
+ L

d
. The λ

can be used to adjust the preciseness and general of the result.
3. Instead of using a regular expression to determine the cost of encoding, we

use the cost of nondeterministic finite automata (NFA) simulation as the cost
of encoding. This eliminates the necessity for enumerate multiple sequence
partitions to compute the minimum cost for encoding.

It is difficult to represent the encoding of a string with a regular expression.
So instead of working on regular expressions, we consider NFA constructed by
Thompson’s [5] method.

For example, given {abcab, abdab, abcabab, abcababab, abdabababab} as the set
of input sequences, we may have ab(c|d)(ab)∗ or (ab|c|d)∗ as candidate regular
expressions after analyzing the repeat patterns. The corresponding Thompson
NFAs can be constructed as illustrated in Fig. 2.

The NFA can be represented by encoding the states and its transitions. So

L
g

= (S + T) logS,

where S is the number of states and T is the number of transitions.
To compute L

d
, we use the cost of NFA simulation as the cost of string en-

coding. Intuitively, the number of states in each state vector denotes the number
of choices for each step, which should be encoded. For example, the state vectors
in NFA simulation for NFA1 and NFA2 on string abcabab can be illustrated by
Table 1.

347

NFA for (ab|c|d)*

a b

d

1 2

4 5

6 7

9

10 11
c

3

8

a b a b
d

c

1 2 3

4 5

6 7
8 9 10 11 12

NFA for ab(c|d)(ab)*

Fig. 2. NFAs for ab(c|d)(ab)∗ and (ab|c|d)∗

Step 1 2 3 4 5 6 7 8 9 10 11 12 cost 1 2 3 4 5 6 7 8 9 10 11 cost

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 6

2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1

3 0 0 1 1 0 1 0 0 0 0 0 0 3 0 1 1 0 1 0 0 1 0 1 1 7

4 0 0 0 0 1 0 0 1 1 0 0 1 4 0 1 1 0 0 1 0 1 1 0 1 7

5 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 1 0 1 1 3 0 1 1 0 1 1 0 1 0 1 1 7

7 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 1 0 1 1 3 0 1 1 0 1 1 0 1 0 1 1 7

Table 1. Transition Vectors for NFA1 and NFA2

It is obvious that ab(c|d)(ab)∗ is a better choice as the description cost L
d

using NFA1 is much smaller than that of the second one.
The complexity of the above algorithm is O(cn2), where n is the length of the

string for inference, and c is the numbers of the strings. Although the algorithm
is quadratic w.r.t. the length of input string, it is highly efficient when the length
of the string is short. With heuristic tree size reduction in our implementation,
the running time is linear w.r.t. the size of the document for most applications.

4 Measuring the Content Similarity

To measure the similarity of the text contents of the XML documents, we use the
standard techniques for text categorization. The vector space model (VSM) is a
standard representation approach in document classification. In VSM, a docu-
ment is represented by the words (terms) it contains. The full set of documents,
denoted by D, is referred to as the corpus and the full set of terms, denoted by
T , occurring the corpus as the dictionary. There are three phases in the VSM:
document indexing, term weighting, and similarity evaluation. Document index-
ing usually counts frequencies of terms and removes some high frequency terms,
such as ’a’,’the’, etc. Term weighting procedure measures the contribution of
each term to the document and calculates the weight w

j
. A document d

i
is rep-

resented as a vector d
i
= (w1, w2, . . . , w|T |), where 0 ≤ w

j
≤ 1 is the weight of

the jth term contributing to document d
i
, and |T | is the number of terms in

348

T . Although many words have been removed from T in document classification,
the dimensionality of the term space is still very large. Based on the observation
that some terms are semantically equivalent, Latent Semantic Indexing (LSI)
has been successfully introduced in dimensionality reduction by mapping query
and documents into a ’latent’ semantic space. In LSI, semantically related terms
are mapped onto the same dimensions, and non-related terms onto different di-
mensions. More specifically, by using Singular Value Decomposition (SVD), a
term-by-document matrix A|T |×|D| is decomposed as

A|T |×|D| = U|T |×r
ΛV T

r×|D|

where r is the rank of A and Λ is a diagonal matrix.
In similarity evaluation when a query q is given, we treat it as a document

and project it into the LSI space with the transformation as follows.

q̂ = Λ−1UT

r×|T |q|T |.

After the transformation, the similarity between query q and document d
i

can be evaluated in the LSI space.

5 Document Classification

In this section, we show how to classify XML documents based on their struc-
tures using the edit distance between XML documents and schemas. Classifying
documents based on their structures plays an important roles for XML data
storage and information retrieval [11].

The most important quantitative measure for structure oriented classification
of XML document is document distance. Most methods in literature are based
on distances between documents, especially tree edit distances. However, tree
edit distances between two XML documents may not be a good measure for
structural similarity. For two documents of different sizes (different number of
nodes), the distance between them may be large even if they conform to the
same schema. Based on this observation, it would be ideal to use a measure how
good an XML document conforms to a schema. The edit distances between XML
documents and schemas will be ideal for this purpose.

The design of the classification system can be illustrated by Figure 3:
According to our approach, there are three steps to get a classifier. The first

step is representative selection and schema extraction. The schema extraction
has been covered in detail in Section 3.

The second step is to compute the distance between the documents and the
schemas (one from each class). Suppose there are n classes of objects in the
training set, one unified schema is generated for each class. For each document,
a distance vector 〈d1, d2,, dn

〉, which represents the distance between each
document and the “center” points of the class, is computed and fed into a learn-
ing machine to train a classifier.

349

Classifier

2 n<d , d , , d >

1
2

n
<

d
, d

, , d
>

XML doc

D
istance

C
om

putation

Training

DataSet

for class 2 for class nfor class 1

Class 1 Class 3Class 2

distance vectors

............................

schema schema schema

Classifier Training

1

Fig. 3. System Architecture

The third step is the classifier training. Various software packages have been
implemented for data classification. Once each document is represented by a
distance vector, feeding the distance vector and training the classifier is straight-
forward for most software systems.

To classify a document, the distance vector consists of the distances between
the document and the schema from each class is computed. The classifier gives
the label of the document based on the distance vector.

We also tested the classification system on the benchmark data from XML
Mining Challenge [11] in order to:

1. Show that the distance between an XML document and a schema is a effec-
tive similarity measure for XML documents.

2. Assess the feasibility of automatic document classification based on this new
distance.

An SVM classifier is trained using Weka [14] software package.

6 Implementation and Experimental Results

We have fully implemented the algorithms described in the above sections, and
developed a prototype system for document clustering. The system is a java-
based software system with the following functionalities:

– Extract a schema from a collection of XML documents. The schema can be
represented in DTD or NRHG.

– Generate content summaries for a collection of XML documents.
– Compute pairwise distance between XML documents and schemata.
– Compute pairwise distance between XML documents using structural sum-

maries.

350

– Train an SVM classifier and classification using SVM.

Based on the implementation, we have tested the classification system using
the Inex data set provided by XML Mining Challenge [11]:

1. Show that the distance between an XML document and a schema is a effec-
tive similarity measure for XML documents.

2. Assess the feasibility of XML document classification based on this new
distance metric.

The classification result for MovieDB data set based on the structure is presented
in Table 2.

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 8 12 12 14 4 6 20 3 0

2 7 14 13 15 7 5 20 0 3

3 10 9 10 14 6 6 20 0 0

P & R P = 41.6% P = 71.6% P = 95%

Table 2. Classification Result: MovieDB Data Based on Structure

Notice that in our algorithm, the values of P reach excellent level (better
than 95%) for the MovieDB data when only the structure information is used
for classification. The structural summary method can produce very good results
when the length of the repeat pattern is 1, but the accuracy becomes significantly
degraded (to 71.6%) when the repeat patterns are more complicated.
The classification result for the Inex data set based on the structure and the
content is presented in Table 3.
Remarks:

The evaluation results indicate the following:

– Regular hedge grammar is a better way to characterize the structural prop-
erties of XML documents than structural summary.

– The schema extraction method using MLD principle and NFA simulation
cost is effective in extracting schema rules from a collection of documents.

7 Conclusions

In this paper, we have studied the problem of computing the edit distance be-
tween an XML document and a schema. Three edit operations were considered
for manipulating an XML tree: insert a node as a leaf, delete a leaf node and
replace, and each operation is of constant cost. We gave a novel solution to this
problem by studying how an ordered labeled tree could be transformed such that
it conforms to a NRHG with minimum cost (edit distance).

351

Group 1 10 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 9 Precision

1 85 0 1 2 1 0 0 0 0 1 0 1 0 0 2 1 0 2 0.88

10 6 113 2 16 0 1 0 1 0 1 39 35 4 5 8 4 0 5 0.47

11 3 10 81 6 2 1 2 0 0 0 4 52 16 11 34 18 3 10 0.32

12 13 24 7 272 1 0 0 0 0 1 24 85 15 4 17 4 3 16 0.55

13 1 0 1 0 284 46 1 6 8 7 1 0 0 0 1 2 0 0 0.79

14 0 0 0 0 82 242 2 7 3 18 0 0 0 0 0 0 0 0 0.68

15 0 0 0 0 1 5 64 3 8 0 1 0 0 0 0 0 0 0 0.78

16 0 0 1 0 32 16 10 200 34 21 1 0 0 0 0 0 0 1 0.63

17 0 0 0 0 13 4 7 10 372 9 0 0 0 0 0 0 0 1 0.89

18 2 0 2 3 91 73 26 60 48 235 5 8 2 2 3 1 3 0 0.41

2 1 23 1 8 0 1 1 0 1 0 134 15 9 3 5 2 0 2 0.65

3 1 15 7 37 1 0 0 0 0 1 14 475 22 6 13 9 1 13 0.77

4 17 26 26 27 5 3 4 2 6 8 64 39 158 19 22 12 3 21 0.34

5 3 3 1 9 2 2 1 2 0 0 11 23 1 164 2 1 1 21 0.66

6 12 7 37 35 0 2 1 0 2 2 10 74 37 10 210 23 3 22 0.43

7 3 3 15 9 0 0 0 0 0 0 0 11 4 2 12 181 4 7 0.72

8 3 1 2 15 0 0 0 0 0 0 19 59 11 13 6 3 112 8 0.44

9 6 10 8 21 1 0 1 0 0 1 18 86 7 34 16 5 0 155 0.42

Recall .54 .48 .42 .59 .55 .61 .53 .69 .77 .77 .39 .49 .55 .60 .60 .68 .84 .54

Table 3. Classification Result: Inex Data Based on Structure and Content

Based on the definition of the edit distance between an XML document and
a schema, we presented an approach for classification of XML documents using
structural distance. Although it is more complicated than the methods presented
in [10] and [4], it can classify documents having more complicated structure with
much higher accuracy. Both classifying based on the structure, and a combina-
tion of structure and content are studied in our project. Experimental studies
have shown the effectiveness of our methods.

References

1. Nobutaka Suzuki, Finding an Optimum Edit Script between an XML Document

and a DTD, Proceedings of ACM Symposium on Applied Computing, pp. 647 -
653, March, 2005, Santa Fe, NM.

2. G. Xing, Fast Approximate Matching Between XML Documents and Schemata,
APWeb 2006 (X. Zhou et al. Eds), LNCS 3841, pp. 425-436, Springer-Verlag, 2006.

3. Rodney Canfield, Guangming Xing, Approximate XML Document Matching

(Poster), Proceedings of ACM Symposium on Applied Computing, March, 2005,
Santa Fe, NM.

4. Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, Timos K. Sellis A methodol-

ogy for clustering XML documents by structure, Information Systems, 31(3): 187-
228 (2006).

5. K. Thompson, Regular Expression Search Algorithm, Communications of ACM,
vol 11-6, pp 419–422, 1968.

352

6. D. Shasha, K. Zhang, Approximate Tree Pattern Matching, Chapter 14 Pattern
Matching Algorithms (eds. Apostolico, A. and Galil, Z.), Oxford University Press,
June 1997.

7. M. Murata Hedge Automata: A Formal Model for XML Schemata

http://www.xml.gr.jp/relax/hedge nice.html

8. G. Myers Approximately Matching Context Free Languages, Information Processing
Letters, 54, 2, pp. 85-92, 1995.

9. W. Chen, New Algorithm for Ordered Tree-to-Tree Correction Problem, J. of Al-
gorithms, 40:135-158, 2001.

10. A. Nierman, H. V. Jagadish, Evaluating structural similarity in XML documents,
WebDB 2002, Madison, Wisconsin, June 2002.

11. XML Document Mining Challenge, http://xmlmining.lip6.fr/
12. Boris Chidlovskii, Schema Extraction from XML Data: A Grammatical Inference

Approach, KRDB’01 Workshop, Rome, Italy, September 15, 2001.
13. Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, Kyuseok Shim,

Xtract: A System for Extracting Document Type Descriptors from XML Docu-

ments, SIGMOD Conference 2000, pp. 165-176, May 16-18, 2000, Dallas, Texas,
USA.

14. WEKA Project, http://www.cs.waikato.ac.nz/ml/weka/
15. Fabrizio Sebastiani, Machine learning in automated text categorization, ACM Com-

puting Surveys, vol 34-1, pp 1-47, 2002.
16. G. Karypis, CLUTO A clustering toolkit Technical Report 02017, University of

Minnesota, Department of Computer Science, Minneapolis, MN 55455, Aug. 2002.

353

XML Document Mining using Graph Neural Network

S.L. Yong1, M. Hagenbuchner1, A.C. Tsoi2, F. Scarselli4, M. Gori4

1 University of Wollongong, Wollongong, Australia
2 Monash University, Melbourne, Australia

3 University of Siena, Siena, Italy

Abstract. This paper addresses the application of a relatively new machine learn-
ing method known as the Graph Neural Network to the task of classifying semi-
structured documents, like XML documents. A relatively large set of XML for-
matted documents is being used to investigate the suitability of Graph Neural Net-
works for such a task. It will be shown that the Graph Neural Network approach
is capable and it outperforms any other competitor’s approach at an international
competition on XML document classification.

1 Introduction

Neural Networks are popular machine learning methods that can be trained on a set of
examples. Multi-layer Perceptron networks in particular, and networks based on such
architectures, are well studied methods and are the most popularly applied in prac-
tice. Such networks are trained in a supervised fashion which means: for every (input)
sample, a desired (output) target is given. Networks are generally trained iteratively by
adjusting internal network parameters such that for a given input pattern the desired
output pattern is achieved. The greatest advantage of such a method is in its ability to
generalize over previously unseen data. This means that a neural network, once trained,
can produce a suitable response to an input that was not part of the set of training sam-
ples. In addition, neural networks have good noise immunity, in the sense that they can
provide suitable response even though the input samples are contaminated with noise.
As a consequence, neural networks are popularly applied to tasks involving noisy sam-
ples. Let us take the task of image recognition as an example. No two photographs of the
same object are ever identical. This is due to the analogue nature of traditional cameras
(or probabilistic nature of digital cameras), and due to the fact that environmental con-
ditions such as lighting conditions and object aging, are constantly changing. A human
observer would have no difficulty in assessing object depicted in photographs that can
differ vastly in size, pose or quality. Many computer methods are an exact science which
require the hard-coding of information or rules to produce object recognition abilities.
Such systems are likely to fail if anything unaccounted should occur. For example, if
hard coded data or rules do not account for the possibility for an object to fly, then such
applications may be unable to identify an apple as it falls from a tree. Neural networks
on the other hand are a generic method that can learn from possibly noisy samples
and produce a desired output regardless. As such, a neural network would be able to
recognize an apple as an apple regardless to its surroundings or physical condition.

354

Traditionally, neural networks are trained on constant-length vectorial inputs. One
extension, called Recurrent Neural Networks, allows the method to be used in char-
acterizing continuous signals. Such networks are trained on constant sized, shifting
sub-sections of a signal through a feedback loop which provides information from the
processing of a previous sub-section as an additional input to the network. These ideas
were extended further through the introduction of Recursive Neural Networks which are
capable of processing directed acyclic graphs by individually processing the (labelled)
nodes of a graph rather than the graph as a whole. This is achieved through the notion
of states in the network, which is analogous to the same concept in physics, character-
izes the activation of a node, and by providing the states of neighboring nodes as an
additional network inputs. The recursive nature of the training algorithm ensures that
the states of any node in the graph is propagated through the entire graph, and thus, the
graph as a whole is encoded by such a method. This method of processing graph struc-
tured data is different to those used in traditional methods in which any graph structured
data, e.g. acyclic tree, is first “squashed” to become a vector first, before feeding it to
e.g. a multilayer perceptron for the usual processing. By retaining the graph structured
data as long as required, it is argued that the information encoded in the topological
nature of the graph is retained [6].

A recent development produced the Graph Neural Network (GNN), it is a new kind
of neural networks that can process much more general types of graphs such as undi-
rected or cyclic graphs, and graphs that feature labelled links and labelled nodes. This
has been a breakthrough development since it has become possible for the first time to
process general types of graphs without requiring pre-processing of graph structured
information.

Graph structured information can be found everywhere in the real world. Any object
is a structural composition of basic elements where the elements can be scaled down as
far as a molecular level – which by itself is structured object. Even the most basic type
of information can be encoded as a structure by simply representing such information
by a graph consisting of a single node. In practice, most information can be represented
appropriately as a set of vectors. However, there are numerous instances for which a
vectorial representation is insufficient. For example, the World Wide Web is a large
graph with web pages serving as nodes, and hyperlinks as edges. It would not be useful
to represent the Web in vectorial form as most of the information is encoded in the
topological nature of the Web.

The GNN extends the idea emerged from the Recursive Neural Network by as-
suming each node is represented by a recurrent neural network [8] so as to allow the
processing of cyclic graphs. The recurrent neural network will model the recursive na-
ture of the information encoded in a cyclic graph or an undirected graph in the form of
a state. The outputs from the hidden layer are then fed to the succeeding node (along
the link) as inputs. The output is obtained from the output node of the entire document.
In this case, this will be an ordinal number denoting the classification of the document.
The training at each stage will involve the adaptation of the weights of each node from
the local inputs to the node. With some generic conditions on the behaviour of the GNN,
it is possible to show that such networks have universal approximator property, and that
the states in each node will converge. The detailed theoretical description of the GNN

355

Table 1. INEX XML document classes in the training dataset. The associated numbers are the
class IDs.

Computer Graphics Hardware Artificial Internet Parallel
Intelligence

Transaction tc(13),ts(18) tg(15) tp(17),tk(16) td(14)
Non an(1),co(3),

cg(2) dt(5),mi(9) ex(6),mu(10) ic(7) pd(11)
Transaction cs(4),it(8),so(12)

method is quite complex and is not within the scope of this paper. The reader is advised
to consult the following references: [4, 5, 7].

This paper applies the GNN to the task of classifying XML formatted documents
to investigate its suitability for such a task. The task is of particular interest due to the
increasing popularity of XML formatted information. Vast repositories of electronic
documents are being represented using this structured meta language and hence, the
mining of information from such an environment is becoming increasingly important.

It will be shown that the GNN method requires little or no pre-processing of such
semi-structured data, that it can perform well, and that it is suited for mining large
databases due to its generalization abilities. It will furthermore be demonstrated that
the performances obtained by processing either the document structure only or both
the structure and content the results are superior to those of any other competitors’
approaches obtained to date.

This paper is structured as follows: an overview of the learning task is given in Sec-
tion 2. A detailed description of the experimental framework, and findings are presented
in Section 3. Some conclusions are drawn in Section 4.

2 The Learning Problem

For the INEX XML Mining task, a training dataset is provided. The dataset contains
published papers in computer science, in the areas of hardware, graphics, artificial in-
telligence, etc. It contains papers from transactional and non-transactional journals. The
training dataset consists of a total of 6,053 XML documents which are divided into 18
different classes. These 18 classes are shown in Table 1.

Information on which XML document belongs to which class is provided for the
training dataset. The distribution of the training dataset is shown in Figure 1. It can be
seen that the largest class is “co” (3) with a total of 963 documents and the smallest
class is “tg” (15) with a total of 105 documents. In this training dataset, it is important
to note that there are two major difficulties:

1. The dataset is unbalanced 4 for the number of documents in each class; and
2. The dataset is unbalanced between “Transaction” and “Non-Transaction” articles.

There are two classification tasks specified in this competition:

4 By “unbalanced” we mean that there are uneven distributions of data.

356

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

tstptktgtdtcsopdmumiiticexdtcscocgan

N
um

be
r

of
 D

oc
um

en
ts

Class

Fig. 1. Distribution of INEX XML Documents in Their Respective Class

Structure only: Classification of documents by considering the XML structure only.
Any textual content (other than the XML tags) is ignored.

Structure and content: Classification of XML documents using both structure and
content.

For the classification using structure only task, it is noted that there are a total of
165 different XML tags which may or may not occurs in all the XML documents. A
test dataset was made available towards the end of the XML clustering competition.
The test data were unlabeled. Performances on the test dataset were computed by using
a script as provided by the organizers of the clustering competition 5. This situation is
analogous to the real world situation where machine learning methods are only trained
on the training dataset and deployed on the real data which has not been used to train
the algorithms.

For both tasks, the performance is measured using Macro and Micro-F1. F-measure[2]
is the weighted harmonic mean of precision and recall defined as:

F =
{

0 if αR + (1− α)P = 0
PR

αR+(1−α)P else (1)

where P is the precision, R is the recall, α is a balancing factor, and F,R, P ∈ [0; 1].
In the standard F1 (or simply refer to as F-measure), α is set to 1

2 where P and R is
weighted equally. Macro-F1 is the averaged F1 value over all classes while Micro-F1

is the weighted average F1 value. The task is to maximise F .
5 The script can be obtained from http://xmlmining.lip6.fr/Results

357

3 Experiments

3.1 Initial experiments

Test data were not available until shorty before the conclusion of the XML clustering
competition. As a consequence, the initial approaches addressed in this Section evaluate
network performances on the training data. Performance evaluations on test data will
be given in Section 3.2. Thus, initially we resorted to splitting the available data (the
original training data set) into three sub-sets 6:

Training Set: 80% of the original training data set is selected to be used for training
purposes.

Validation Set: 10% of the original training data set is selected to serve as a validation
data set. Validation data are used to test the network during training but are not used
to train the network. The network is trained to perform optimally on the validation
dataset.

Test Set: The remaining 10% are used as test data.

Experiments were conducted by applying the multilayer perceptron (MLP) which
processes data without considering the topological features, and by applying the GNN
to the graph structured representation of the same dataset. Unless stated otherwise, the
neural models trained were non-linear models using the linear output function x = f(x)
in the output layer. All other neurons used the sigmoidal hyperbolic tangent transfer
function. Two hidden layers with 10 neurons in each layer were used. In addition, for
the GNN, we used 5 state neurons between the transition network and output network.

Processing without topological features: As a baseline performance measure, a stan-
dard multilayer perceptron (MLP) is used. This is to validate to whether the inclusion of
structural information into the machine learning method produces a noticeable advan-
tage. When using the MLP, the input data needs to “squash” the structured input into
a corresponding vector. This is done as illustrated in Figure 2. Thus, the training set
consists of 6, 053 vectors of dimension 165, each of which is associated with an 18 di-
mensional binary target vector. Iterating the MLP training algorithm for 1000 iterations
required 30 minutes of CPU time on a 3GHz Intel based CPU. The performance of the
trained MLP on the test set is as shown in Table 2. It can be seen that the performance
meassured P and R can vary greatly across the various classes and tend to produce
better results for the larger classes.

To counter possible issues that may have risen from the unbalanced distribution
of pattern classes, we then trained the MLP by balancing the training set. This was

6 There are other ways of dividing up the training dataset for training purpose, e.g. N-fold
cross validation method. In this case, the training dataset is randomly divided into the training
dataset, and N validation datasets. The algorithm is trained using the training dataset, evaluated
on randomly selected (N-1) validation sets and then tested on the remaining validation set. The
result is the average over all the experiments, and the model which provides the best result will
be selected. We decided not to use the N-fold cross validation method as it will take too much
time due to the complexity of the tasks. This will become clear later in this section.

358

Class 1 Document
<article>
 <bdy>
 <sec>
 <ip1></ip1>
 <p></p>
 <p></p>
 <p></p>
 <ip2></ip2>
 <p><it></it></p>
 <p></p>
 </sec>
 </bdy>
</article> [

⋮

1
⋮
0
⋮

5
⋮
1
⋮

]
<article> occurrence
is 1 at index 12

<sec> occurrence
is 1 at index 129

<p> occurrence
is 5 at index 110

<ilrj> occurrence
is 0 at index 62

Input Vector [
1
�1
⋮

⋮

�1
]

Target Vector
Document belongs
to Class 1

Fig. 2. Conversion of an XML document to a MLP input and target.

Table 2. MLP training results.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.06 0.11 0.10 0.13 0.22 0.28 0.02 0.04 0.14 0.30 0.17 0.14 0.62 0.41 0.33 0.43 0.16 0.56
P 0.03 0.07 0.03 0.08 0.12 0.11 0.01 0.01 0.09 0.08 0.12 0.07 0.34 0.29 0.31 0.39 0.09 0.27

Macro F1: 0.17, Micro F1: 0.12

Table 3. Balanced MLP training results.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.08 0.12 0.12 0.15 0.23 0.28 0.04 0.05 0.15 0.35 0.19 0.16 0.62 0.41 0.35 0.43 0.18 0.56
P 0.05 0.09 0.05 0.09 0.12 0.11 0.02 0.02 0.010 0.09 0.12 0.09 0.34 0.29 0.31 0.39 0.10 0.28

Macro F1: 0.18, Micro F1: 0.12

achieved by increasing the samples from the small classes by creating copies of ran-
domly chosen data from the same class. Copies were added until each of the classes
was of the same size as the largest class. The result of training the MLP on this dataset
is shown in Table 3. It can be seen that the performance increased slightly. The F1
values serve as a benchmark on which to compare alternative approaches.

Processing data by including topological features: Graph Neural Network is a neu-
ral network architecture which can process graph structures without pre-processing.
However for real world tasks, in general, training GNN without pre-processing is not
feasible due to the limitation of computer hardware memory and processing speed.

Without pre-processing, the resulting graphs have a maximum size of 14, 047 nodes.
When considering the general schema of the GNN learning process as depicted in Fig-
ure 3, it is seen that the present implementation of GNN requires each graph to be

359

.

.

1

18

.

.

.. Graph
Neural Network T

argets

XM
L Connectivity M

atrix

The connectivity matrix of a single XML document

Fig. 3. The Graph Neural Network learning process.

mapped to a fixed size matrix 7. In addition, since GNN represents each node by a recur-
rent neural network, the memory requirements also depend on the state dimension and
on the number of hidden nodes in the transition net, which give an important contribu-
tion to the memory occupation. Thus, it is found that without pre-processing, for 6,053
XML documents, it will require storage for a total of 14, 047 × 6, 053 = 85, 026, 491
nodes. To process these graphs directly is not practical, some pre-processing is neces-
sary to reduce the size of the data.

To find a good pre-processing technique, it is important to first understand how
GNN is deployed for the XML learning task. In the XML learning task, an XML file
is translated into a graph as shown in by an example in Figure 4. In Figure 4 is can be
seen that for each XML tag that is encapsulated by another tag this produces one child
node in the graph. Since in XML it is not possible to have overlapping tags such as
<it><p></it></p>, the resulting graph is a tree where links can be directed so as
to indicate the parent/child relationship between the nodes, or be undirected if no such
relationship is to be assumed.

GNN estimates the target state of a particular node depending on the neighbour
nodes iteratively. Referring to Figure 4, for example, the state of the node <sec> de-
pends on the nodes: <bdy>, <ip1>, <p> and <ip2>. However, if we observe more
carefully in Figure 4, the shaded node <p> differs from other <p> nodes since it has
an extra node <it> as its neighbour. Due to the extra neighbour, the shaded <p> node
should have a state different from the unshaded <p> nodes. In Figure 4, we note further
that there are four <p> nodes in the same configuration. These would group together
to become one <p> node. The shaded <p> node is a separate one from the unshaded
<p> nodes. Thus, in order to decrease the dimension of the training set we consolidate
repeated sub-structures. The result is that the graph depicted in Figure 4 is reduced to a
graph as shown in Figure 5.

With the pre-processing method, the graph size is reduced to a maximum of 78
nodes per XML document. Each of the node is then given a unique numeric label ac-

7 This is a limitation with the current software implementation. No such limitation is imposed
by the underlying theory of GNN.

360

article

<article>
 <bdy>
 <sec>
 <ip1></ip1>
 <p></p>
 <p></p>
 <p></p>
 <ip2></ip2>
 <p><it></it></p>
 <p></p>
 </sec>
 </bdy>
</article>

bdy

sec

ip1 p p p ip2 p

it

p

Fig. 4. Conversion of an XML document to a corresponding graph structure.

article

bdy

sec

ip1 p ip2 p

it

Fig. 5. The reduced XML Graph.

12

17

129

65 110 66 110

70

Fig. 6. XML graph with node labels.

cording to the XML tag (as shown in Figure 6) to differentiate the nodes. Ideally these
node labels should be multi-dimensional (i.e. 165 dimension in the INEX XML since
there are 165 different tags) to maximize the Euclidian distance. However, a 165 di-
mension label is also not practical in this experiment, instead only a 1-dimensional
node label is used.

Graph Neural Network: Classification Using Structure Only As a first approach, we
trained one GNN for each of the 18 document classes by creating a training set which
has a positive target value for patterns that belong to the particular class, and a negative
target value for all other patterns. The result is 18 GNNs where each of the GNN has
been trained to recognize one class only. In order to produce an overall classification of
the test data, we also experimented on a number of ways as follows:

1. The GNN that produced the largest (positive) value at the root node determines the
class to which the document should be assigned;

2. Training a MLP to process the output of all 18 GNNs on the root node. Here, the
MLP receives an 18-dimensional input (the output of the GNNs) and is trained
to produce as output the class membership of the input pattern. Once trained, the
GNN-MLP dual system produces the classification of a test data.

361

Table 4. The results for unbalanced training of GNN’s.

Approach Micro F1 Macro F1
Highest Output of Root Node 0.13 0.09
MLP Output of Root Node 0.15 0.12
Highest Output of all Nodes 0.04 0.02
MLP Output of all Nodes 0.11 0.05

3. For each of the 18 GNNs, combine the output created for all (78) document nodes
then take the highest output to determine the class of a document; this is akin to the
idea of a winner take all approach to processing the classification outcome; and

4. Combine the scores of all (78) document nodes and process the output through an
MLP similarly to approach 2.

The results are as shown in Table 4. Upon closer investigation of these results, it is
found that most of the documents are classified as class “co”. Referring to Figure 1, we
observe that the class “co” is the largest class and its size is about 166% of the second
largest class “tp” and 894% of the smallest class “tg”. This raises the suspicion that
the highly unbalanced nature of the training dataset causes the low performance of the
learning task.

Even with such a low performance, the results shown in Table 4 gives some useful
insight about using a GNN model:

1. Performance improves with using an MLP output. This can be explained by the
fact that the outputs of the GNN may have different magnitudes as classes with
more documents tend to have a larger output magnitude. These magnitudes can be
normalized to a common scale by using a MLP.

2. Classification based on root node performs better. This observation can be ex-
plained as follows: the GNN architecture estimates the state of a node by integrating
the contributions of its neighborhood nodes. As the GNN learns the structure of a
graph interatively, eventually the root node will have a consolidated state which
allows it to separate the graph as a whole from other graphs. Using the outputs of
other nodes to classify a graph can add noise. This is so because there are many
similar substructures in the graphs even if they belong to different classes.

With more understanding on this learning task using GNN, the experiments are
repeated with a balanced training dataset. This is achieved by weighting the training
data with respect to the frequency of occurrence in the training set. Then the weights are
normalized such that the total sum of all weights is equal to 1. For example, class “an”
has 160 documents and class “mi” has 320 documents, the weights of each document
in class “an” would be double those of the documents in class “mi”. Balancing the
dataset produced much better results as shown in Table 5. The results confirm that an
unbalanced distribution of training patterns can have a significant negative impact on
the performance of a machine learning method.

The INEX XML Classification using structure only results it is observed that GNN
is able to perform better than the baseline MLP method as reported in Section 3.1. This

362

Table 5. The results for GNN Classification based on root node with a balanced training dataset.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.44 0.68 0.28 0.40 0.46 0.51 0.47 0.55 0.77 0.43 0.39 0.33 0.48 0.45 0.50 0.42 0.59 0.68
P 0.79 0.32 0.55 0.66 0.24 0.57 0.34 0.62 0.62 0.33 0.37 0.21 0.45 0.70 0.57 0.68 0.54 0.80

Macro F1: 0.48, Micro F1: 0.34

is an indication that the inclusion of structural information can help to improve the
overall performance of a machine learning method.

It is important to understand that using GNN, the number of network parameters
are generally greater then for a standard MLP. For the baseline MLP training, a network
with 2 hidden-layer each containing 50 neurons is deployed. For the GNN, 2 neurons
are used for each of the 2 hidden-layer of the Transition Network. The transition net-
work featured furthermore 2 states nodes which also produce the output, and 2 neurons
are used in the 2 hidden-layer of the Output Network. Due to architectural differences
between MLP and GNN, a fair comparison between the two methods is difficult. How-
ever, in practise, the experiments in GNN typically finished within 12 hours on a 3GHz
Intel machine with 2GB RAM. Thus, requiring considerably more time for training
when compared to the MLP method.

During the training of GNN, it was noticed that the overfitting of GNN does not ap-
pear to occur, and that convergence to a stable Mean Square Error value occured at about
1, 000 to 1, 500 training epochs. Since GNN does not appear to overfit in this learning
problem, there appears no particular need for a validation dataset. Thus, in Section 3.2,
the experiments are done using all of the data in the original training dataset.

3.2 Advanced experiments

Having identified a suitable approach to the training task, in the following we report
experimental results which are based on utilizing 100% of the original training set for
training purposes, and include test results based on the test dataset as provided by INEX
2006. In the following, all experiments are based on balancing the training data.

Better Understanding of INEX XML Document Structures: The results in Sec-
tion 3.1 show that using structure only for classifying the INEX XML documents is
not really practical. When the Test Dataset was released, some more experiments are
performed to test the performance of GNN on the classification of either a document
is in the class of “Transaction” or in the class of “Non-Transaction”. It is found that
the results are of no significant differences (see Table 6). This means that in the INEX
XML dataset, there is not much structural differences between “Transaction” and “Non-
Transaction” documents.

GNN, Classification Using Structure and Content: A method needed to be found
to compute a numerical representation of the text contained in a document. As a first
approach, we extracted the textual content from each of the documents in the training

363

Table 6. The results for GNN Classification on “Transaction” and “Non-Transaction” classes of
documents.

Transaction Non-Transaction Precision
Transaction 2341 1623 0.59

Non-Transaction 657 1433 0.69
Recall 0.78 0.47

12,1,

0,...,0

17,1,

0,...,0

129,1,

0,...,0

65,1,

0,...,0

110,1,

0,...,0

66,1,

0,...,0

110,1,

0,...,0

70,1,

0,...,0

Fig. 7. Graph of XML Document with Multi-Dimensional Node Labels.

set, applied the Porter Stemming Algorithm[3] to obtain a numerical vector represent-
ing the text, then trained a naı̈ve Bayes classifier[1] on these data. The naı̈ve Bayes
classifier produced an 18-dimensional binary vector indicating the class membership of
the document (which is computed based on document’s textual content only). Thus, to
generate the labels for each node in a graph, we applied the following procedure for
each of the documents in the dataset:

Step 1: remove the XML tags;
Step 2: remove the stop words;
Step 3: perform Porter Stemming Algorithm[3] on the content of the documents;
Step 4: naı̈ve Bayes classifier is trained on the training set;
Step 5: the XML documents are classified into 1 of the 18 classes and a 18 dimensional

binary node labels is concatenated to the original node label (which represent XML
tag) to form a 19 dimensional node label. The concatenation affects all nodes of the
same graph.

For example, the root node of the graph shown in Fig. 6 would now have a node label
of <12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0> (assuming that the naı̈ve Bayes classifier
output is class 1) instead of just <12> as was shown in Fig. 7.

Naı̈ve Bayes classifiers are fast to train, and hence, are a suitable method for pre-
processing and labeling purposes. This paper considers two flavours of the Bayes clas-
sifier: the simple Bayes classifier, and the Bayes classifier using maximum entropy. The
latter is computationally more demanding but can produce enhanced results.

The Bayes classifiers classify the documents based on content only. The result of
the simple Bayes classifier on the test set is illustrated in Table 7. It can be seen that
the classifier produces a performance which is somewhat better when compared to the
results obtained on structure only approaches.

364

Table 7. Naı̈ve Bayes on document content of test data only.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.29 0.42 0.72 0.21 0.88 0.27 0.41 0.07 0.49 0.39 0.06 0.76 0.88 0.55 0.26 0.54 0.87 0.27
P 0.96 0.87 0.38 0.88 0.77 0.94 0.89 0.90 0.79 0.81 1.00 0.63 0.36 0.58 0.91 0.82 0.67 0.88

Macro F1: 0.50, Micro F1: 0.53

Table 8. Test results for GNN Classification using Structure and Content.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.94 0.75 0.69 0.54 0.70 0.76 0.64 0.17 0.53 0.48 0.34 0.81 0.82 0.82 0.83 0.90 0.96 0.81
P 0.80 0.76 0.49 0.89 0.83 0.82 0.68 0.92 0.70 0.81 0.79 0.69 0.83 0.77 0.88 0.87 0.89 0.78

Macro F1: 0.72, Micro F1: 0.71

Table 9. Naı̈ve Bayes using maximum entropy on document content of test data only

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.94 0.75 0.69 0.54 0.70 0.76 0.64 0.17 0.55 0.48 0.34 0.81 0.82 0.82 0.83 0.90 0.96 0.81
P 0.80 0.77 0.49 0.89 0.83 0.82 0.68 0.92 0.70 0.81 0.79 0.69 0.83 0.77 0.88 0.87 0.89 0.78

Macro F1: 0.72, Micro F1: 0.72

The result of a GNN trained on the data labeled by this classifier is illustrated in
Table 8. It can be seen that the performance of classification using this method is sig-
nificantly increased. This may indicate that the incorporation of structural information
into the learning task does indeed provide an input which allows for significantly im-
proved results. The result on the test dataset shows that this method achieved Micro
F1 of 0.721440 and Macro F1 of 0.713969, which is the best result obtained at the
INEX XML classification competition8. The best result submitted by any competitor
was: Micro F1=0.59, Macro F1 0.58.

A confirmation of the results and observations made so far is found through the
application of the Bayes classifier using maximum entropy. The performance of this
advanced classifier is illustrated in Table 9. It is seen that the advanced classifier per-
forms virtually at the same level as the GNN when trained on data that were labeled
by the simple classifier. We then labeled the nodes in the training set by the response
of the advanced classifier, and re-trained the GNN accordingly. The result is shown in
Table 10. It is seen that the incorporation of structural information has again helped to
significantly improve the classification of the GNN.

4 Conclusions

This paper demonstrated for the first time that a supervised machine learning method
capable of processing structured data is a very suitable approach for classifying possibly

8 Only one other party submitted results for the INEX 2006 classification competition despite
of 41 registered participants. This confirmed our impression that the training task was very
challenging.

365

Table 10. GNN trained on labels produced by the Naı̈ve Bayes Maximum Entropy classifier.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R 0.90 0.79 0.83 0.67 0.87 0.74 0.59 0.56 0.60 0.48 0.40 0.82 0.82 0.77 0.64 0.82 0.99 0.74
P 0.98 0.76 0.55 0.84 0.86 0.84 0.80 0.94 0.84 0.80 0.88 0.75 0.81 0.76 0.95 0.90 0.89 0.87

Macro F1: 0.76, Micro F1: 0.76

large sets of XML formatted documents. While the training phase may seem time con-
suming, the application of a trained network to test data is very fast. The classification
of all test pattern completed in a matter of minutes.

It was furthermore shown that the combination of both, structure and content, can
help to improve the classification performance significantly. This seems to indicate that
the XML structure may not be a feature that allows for an effective differentiation of
the 18 pattern classes.

The encoding of document content into the training and test dataset can be im-
proved. Instead of utilizing the entire textual content of a document and the attachment
of identical labels to all nodes in a graph, it should be better to consider only the text
that is encapsulated by the individual XML tags. This would allow for a distinct label-
ing of the nodes in a graph and should advocate an improved separation of the pattern
classes. This approach is not covered in this paper and is left as a future task.

Acknowledgments

The work presented in this paper received financial support from the Australian Re-
search Council in form of a Linkage International Grant and a Discovery Project grant.

References
1. L. Crnkovic-Dodig and P. Elkan. Classifier showdown. http://blog.peltarion.com/2006/07/-

10/classifier-showdown/.
2. C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. The

MIT Press, Cambridge, Massachusetts, 1999.
3. M. F. Porter. An algorithm for suffix stripping. pages 313–316, 1997.
4. F. Scarselli, S. Yong, M. Gori, M. Hagenbuchner, A. Tsoi, and M. Maggini. Graph neural

networks for ranking web pages. In Web Intelligence Conference, 2005.
5. F. Scarselli, S. Yong, M. Hagenbuchner, and A. Tsoi. Adaptive page ranking with neural net-

works. In 14th International World Wide Web conference, Alternate track papers and posters,
pages 936–937, Chiba city, Japan, May 2005.

6. A. Sperduti and A. Starita. Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, Vol. 8(No. 3):714–735, 1997.

7. A. Tsoi, F. Scarselli, M. Gori, M. Hagenbuchner, and S. Yong. A neural network approach
to web graph processing. In Y. Zhang, K. Tanaka, J. X. Yu, S. Wang, and M. Li, editors, The
Seventh Asia Pacific Web Conference, Lecture Notes in Computer Science, pages pp 27 – 38,
Shanghai, China, March 29 2005. http://apweb05.csm.vu.edu.au/, Springer Verlag. Keynote
speech of the conference.

8. R. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. In Neural Computation, volume 1(2), pages 270–280, 1989.

366

The Wikipedia XML Corpus

Ludovic Denoyer, Patrick Gallinari
14th of April, 2006

Laboratoire d’Informatique de Paris 6
8 rue du capitaine Scott

75015 Paris

http://www-connex.lip6.fr/denoyer/wikipediaXML
{ludovic.denoyer, patrick.gallinari}@lip6.fr

1 Introduction

Wikipedia1 is a well know free content, multilingual encyclopedia written collab-
oratively by contributors around the world. Anybody can edit an article using a
wiki markup language that offers a simplified alternative to HTML. This ency-
clopedia is composed of millions of articles in different languages.

Content-oriented XML retrieval is an area of Information Retrieval (IR) re-
search that is receiving an increasing interest. There already exists a very active
community in the IR/ XML domain which started to work on XML search en-
gines and XML textual data. This community is mainly organized since 2002
around the INEX initiative (INitiative for the Evaluation of XML Retrieval)
which is funded by the DELOS network of excellence on Digital Libraries.

In this article, we describe a set of XML collections based on Wikipedia.
These collections can be used in a large variety of XML IR/Machine Learning
tasks like ad-hoc retrieval, categorization, clustering or structure mapping. These
corpora are currently used for both, INEX 20062 and the XML Document Mining
Challenge3. The article provides a description of the corpus.

The collections are downloadable on the website:

– http://www-connex.lip6.fr/∼denoyer/wikipediaXML

2 Description of the corpus

The corpus is composed of 8 main collections corresponding to 8 different lan-
guages4 : English, French, German, Dutch, Spanish, Chinese, Arabian and Japanese.
Each collection is a set of XML documents built using Wikipedia and encoded in
UTF-8. In addition to these 8 collections, we also provide different additional col-

lections for other IR/Machine Learning tasks like categorization and clustering,
NLP, machine translation, multimedia IR, entity search, etc.

1 http://www.wikipedia.org
2 http://inex.is.informatik.uni-duisburg.de/2006
3 http://xmlmining.lip6.fr
4 Some additional languages will be added during the next months.

367

2.1 Main Collections

The main collections are a set of XML files in 8 different languages. The table 1
gives a detailed description of each collection.

Collection name Language Number of documents Size of the collection (MegaBytes)

main-english English 659,388 ≈ 4,600
20060130 french French 110,838 ≈ 730
20060123 german German 305,099 ≈ 2,079
20060227 dutch Dutch 125,004 ≈ 607
20060130 spanish Spanish 79,236 ≈ 504
20060303 chinese Chinese 56,661 ≈ 360
20060326 arabian Arabian 11,637 ≈ 53
20060303 japanese Japanese 187,492 ≈ 1,425

Table 1. General statistics about the Main Collections

Each collection contains a set of documents where each filename is a number
corresponding to the id of the file (for example : 15243.xml). Each id is unique
and each file corresponds to an article of Wikipedia. We only kept articles and
removed all the wikipedia pages corresponding to ”‘Talks”’, ”‘Template”’, etc..
Each file is an UTF-8 document which is created from the wikitext of the original
article. Figure 1 gives an example of an English article extracted from the corpus.

Tag labels We introduced different tags in order to represent the different parts
of a document. We distinguish two types of tags:

– The general tags (article,section, paragraph,....) that do not depend on the
language of the collection. These tags correspond to the structural informa-
tion contained in the wikitext format (for example : == Main part == is
transformed into <title>Main part< /title>)

– The template tags (template infobox,...) represent the information contained
into the wikipedia templates. Wikipedia templates are used to represent a
repetitive type of information. For example, each country described into
wikipedia starts with a table containing its population, language, size,... In
order to uniformize this type of information, wikipedia uses templates. These
templates are translated into XML using tags starting by template ... (for
example : template country). The template tags depend on the language of
the collection because the templates are not the same depending on the
language of the wikipedia collection used.

The DTD is downloadable on the Web site.

Statistics about the collections These statistics are given in table 2

368

the wiki text

The XML obtained

Fig. 1. Example of wiki → XML transformation for the Anarchy article (12.xml)

369

Language Mean size of document (bytes) Mean Document Depth Number of Nodes/Document

English 7,261 6.72 161.35
French 6,902 7.07 175.54
German 7,106 6.76 151.99
Dutch 5,092 6.41 122.8
Spanish 6,669 6.65 165.74
Chinese 6,664 6.91 179.23
Arabian 4,826 5.85 182.1
Japanese 7,973 7.1 94.96

Table 2. Statistics about the structure of the documents from the Main Collections

2.2 Categories

The documents of the wikipedia XML collections are organized in a hierarchy
of categories defined by the authors of the articles. For each main collection, we
propose a set of files describing:

– the hierarchy of categories (file : categories hcategories.csv)
– the categories of each articles (file : categories categories.csv)
– the categories names (file : categories name.csv)

Table 3 gives statistics about the categories.

Language Number of categories in the hierarchy Mean number of categories for each document

English 113,483 2.2849
French 28,600 1.9570
German 27,981 2.5840
Dutch 13,847 1.6628
Spanish 12,462 1.6180
Chinese 27,147 2.0797
Japanese 26,730 2.0039

Table 3. Statistics about the categories of the Main Collections

3 Additional collections

We also propose additional collections. These collections can be used in a large
variety of Information Retrieval and Machine Learning tasks. Some other collec-
tions will be added in the future and are not described here.

3.1 Categorization/Clustering Collections

English Multi-Label Categorization Collection For the English collection,
we also provide a Multi-Label Categorization Collection with :

370

– A list of articles from the Main English Collection

– A set of categories (without hierarchy, based on the Portals of wikipedia): a
document belongs to one or more categories

This corpus can be used to compare categorization algorithms and it is de-
scribed in table 4.

Number of Documents 415,310

Number of categories 72

Mean number of categories for each document 2.2

Mean number of documents for each category 12,5

Number of documents in the larger category 137,9

Number of Documents in the smaller category 108
Table 4. Statistics about the English Multi-Label Categorization Collection

English Single-Label Categorization Collection - XML Document Min-

ing Collection We provide a specific collection where each document belongs
to exactly one category. It is composed of the documents of the preceding
collection belonging to a single category. This collection can be used for catego-
rization and clustering of documents (see table 5). This collection is aimed at
categorization/clustering benchmark.

Number of categories 60

Number of documents 150,094

Number of train documents 75,047

Number of test documents 75,047

Mean number of categories for each document 1

Structure of the corpus The directory documents contains all the corre-
sponding articles. The directory relfiles contains
one file per category giving the id of the docu-
ments that belongs to this category5.

Table 5. Statistics about the XML Document Mining Challenge Collection (Single-

Label Categorization Collection)

3.2 Multimedia English Collection

This collection corresponds to the Main English Collection with the pictures of
the different articles. This collection can be used for Multimedia Information
Retrieval. Table 6 gives statistics about this collection.

371

Number of documents 659,388

Number of pictures more than 300,000

Approximate size of the corpus ≈ 60Gb
Table 6. Statistics about the Multimedia English Corpus

3.3 Entity corpus

We provide an Entity Corpus where each article of the Main English Corpus

has been tagged using a set of possible entity types extracted using the differ-
ent categories of wikipedia. For example : Silverster Stallone has been tagged
as <actors>Silverster Stallone< /actors>. Table 7 gives statistics about this
collection.

Number of Documents XML Entity collection

Number of documents 659,388

Size of the corpus ≈ 6 Gb
Table 7. Entity Collections

4 Conclusion

This technical report describes XML collections based on Wikipedia and devel-
oped for Structured Information Retrieval, Structured Machine Learning and
Natural Language processing. Other collections will be added in the future.

5 Acknowlegment

The wikipediaXML corpus is distributed under the GPL Documentation license.
It is completely free and can be used for non-profit educational and research
purposes. All publications based on the wikipediaXML corpus should cite this
technical report.

372

INEX 2006 Guidelines for

Topic Development
Birger Larsen, Andrew Trotman, et al†

1 Aims
The aim of the INEX initiative is to provide the means, in the form of a large test collection and
appropriate measures, for the evaluation of content-oriented XML element retrieval. Within the INEX
initiative it is the task of the participating organizations to provide the topics and relevance assessments
that will contribute to the test collection. Each participating organization, therefore, plays a vital role in
this collaborative effort.

2 Introduction
Test collections, as traditionally used in information retrieval (IR), consist of three parts: a set of
documents, a set of information needs called topics, and a set of relevance assessments listing (for each
topic) the set of relevant documents.

A test collection for XML retrieval differs from traditional IR test collections in many respects.
Although it still consists of the same three parts, the nature of these parts is fundamentally different. In
IR test collections, documents are considered units of unstructured text, queries are generally treated as
collections of terms and / or phrases, and relevance assessments provide judgments whether a
document as a whole is relevant to a query or not. XML documents, on the other hand, organize their
content into smaller, nested structural elements. Each of these elements in the document’s hierarchy,
along with the document itself (the root), is a retrievable unit. In addition, with the use of XML query
languages users of an XML retrieval system can express their information need as a combination of
content and structural conditions: they can restrict their search to specific structural elements within the
collection. Consequently the relevance assessments for an XML collection must also consider the
structural nature of a document and provide assessments at different levels of the document hierarchy.

This guide deals only with topics. Each group participating in INEX will have to submit 6 CO+S
topics by 21st April 2006. This guide provides detailed guidelines for creating these topics.

3 Topic Creation Criteria
Creating a set of topics for a test collection requires a balance between competing interests. The
performance of retrieval systems varies largely for different topics. This variation is usually greater
than the performance variation of different retrieval methods on the same topic. Thus, to judge whether
one retrieval strategy is (in general) more effective than another, the retrieval performance must be
averaged over a large and diverse set of topics. In addition, to be a useful diagnostic tool, the average
performance of the retrieval systems on the topics can be neither too good nor too bad as little can be
learned about retrieval strategies if systems retrieve no, or only relevant, documents.

When creating topics, a number of factors should be taken into consideration. Topics should:

• be authored by an expert in (or someone familiar with) the subject areas covered by the collection,
• reflect real needs of operational systems,
• represent the type of service an operational system might provide,
• be diverse,
• differ in their coverage, e.g. broad or narrow topic queries,
• be assessed by the topic author.

† Based on prior guidelines additionally authored by Börkur Sigurbjörnsson, Shlomo Geva, Mounia Lalmas, and Saadia Malik

373

4 Topic Format
In previous years, different topic types have been used for the two main ad hoc retrieval tasks at INEX
(i.e., a distinction was made between Content Only (CO) and Content And Structure (CAS) topics). In
addition, different parts of the topics were designed also to be used in other tracks (e.g., the topic
<description> has been tuned to the needs of the Natural language Processing (NLP) track). Following
initial trials at INEX 2005 and recommendations from the 2005 Dagstuhl workshop these topic types
are all merged into one type for INEX 2006: Content Only + Structure (CO+S). In the 2006 topics all
the information needed by the different ad hoc tasks and tracks are expressed in the individual topic
parts, and only one topic type is therefore needed. The 2006 CO+S topics consist of the following parts,
which are explained in detail below:

<title> in which Content Only (CO) queries are given
<castitle> in which Content And Structure (CAS) queries are given
<description> from which NLP queries are derived
<narrative> in which the definitive definition of relevance and irrelevance are given
<ontopic_keywords> in which terms that are expected in relevant elements are listed
<offtopic_keywords> in which terms that are expected in non-relevant elements are listed

4.1 General considerations
A clear and precise description of the information need is required in order to unambiguously
determine whether or not a given element fulfills the given need. In a test collection this description is
known as the narrative. It is the only true and accurate interpretation of a user’s needs. Precise
recording of the narrative is important for scientific repeatability – there must exist, somewhere, a
definitive description of what is and is not relevant to the user. To aid this, the <narrative> should
explain not only what information is being sought, but also the context and motivation of the
information need, i.e., why the information is being sought and what work-task it might help to solve.

Many different queries could be drawn from the <narrative>, and some are better than others. For
example, some might contain phrases; some might contain ambiguous words; while some might even
contain domain specific terms or structural constraints. Regardless of the query, the search engine
results are not necessarily relevant. Even though a result might contain search terms from the query, it
might not match the explanation given in the <narrative>. Equally, some relevant documents might not
be found, but they remain relevant because they are described as so by the <narrative>.

The different CO+S topic parts relate to different scenarios that lead to different types of queries.

The topic <title> simulates a user who does not know (or does not want to use) the actual structure of
the XML documents in a query. The query expressed in the topic <title> is therefore a Content Only
(CO) query. This profile is likely to fit most users searching XML digital libraries.

Upon discovering their <title> query returned many irrelevant hits, a user might decide to add structural
hints (to rewrite as a CAS query). This is similar to a user adding + and – to a web query when too
many irrelevant pages are found. At INEX, these added structural constraints (+S) are specified using
the formal syntax called NEXI [1] (see the INEX website for the specification) and recorded in the
topic <castitle>.

Example
Suppose a user wants to find pictures of the Apple II computer. They enter the CO query:

Apple II figure

but discover that most results are figures of products for the Apple II. They decide to add structural
hints:

//figure[about(., Apple II)]

restricting the results to figure elements only, known to contain the captions of figures.

374

4.1.1 The Ad Hoc Task
The CO+S task is investigating relevance ranking algorithms for ad hoc element retrieval. This year the
task is specifically investigating the usefulness of structural hints. At INEX 2006 it will be possible to
compare the performance (on the same topic) of using structural hints to that of not using structural
hints.

4.1.2 The NLP Task
As an alternative to entering queries into search engines, a user might ask a librarian to find the
information to satisfy their need. Such a user would give a verbal description to the librarian using a
natural language. The NLP track at INEX is examining the ability of a search engine to satisfy the
information need given this natural language description (recorded in the topic <description>).

Just as there are many CO queries derivable from the <narrative>, there are many ways to express the
need in natural language. However it is expressed, it is important that it matches the <narrative> while
at the same time it is not the <narrative>.

The purpose of the NLP experiments at INEX 2006 is to compare the performance of CO, CO+S and
NLP techniques. To do this it is important that the same terms are used in each version of the query.

Example
Suppose a user wants to find pictures of the Apple II computer and chose the CAS query:

//figure[about(., apple II)]

the NLP version would contain the same words and structural constraints:

Show me a figure of the Apple II

which is a brief matter of fact description of the information need.

4.1.3 On-Topic and Off-Topic Terms
The 2006 CO+S topics contain on-topic and off-topic keywords. These are keywords that are either
likely to be found in relevant or irrelevant elements retrieved by the user’s query. They are recorded in
the <ontopic_keywords> and <offtopic_keywords> topic parts. These keywords are needed for
special tests (at INEX 2006) into the possibility of doing automatic assessment.

Example
On-topic keywords for the user's information need for pictures of the Apple II computer might be:

macintosh ; "personal computer" ; photos ; images ; posters

while off-topic keywords might be:

fruit ; "New York" ; Beatles ; granny

4.2 Topic parts
Topics are made up of several parts, these parts explain the same information need, but for different
purposes. An example of a full topic combining all these is given in the Appendix.

<narrative> A detailed explanation of the information need and the description of what makes an
element relevant or not. The <narrative> should explain not only what information is being sought, but
also the context and motivation of the information need, i.e., why the information is being sought and
what work-task it might help to solve. Assessments will be made on compliance to the narrative alone;
it is therefore important that this description is clear and precise.

<title> A short explanation of the information need. It serves as a summary of the content of the user’s
information need. The exact format of the topic title is discussed in more detail below.

375

<castitle> A short explanation of the information need, specifying any structural requirements. The
exact format of the castitle is discussed in more detail below. The castitle is optional but the majority of
topics should include one.

<description> A brief description of the information need written in natural language – to be used in
the NLP track. The description must be precise, concise, and as informative as the <title> and
<castitle> combined. The topic description is discussed in more detail below.

Note that the <description> must be interchangeable with the <title> and <castitle>. Any
ambiguity or disagreement is resolved by reference to the <narrative>, the only accurate
definition of the information need.

<ontopic_keywords> Terms and phrases that are likely to appear in most relevant documents. For
example, if the user is searching for information about element retrieval and the query has the title INEX
then on-topic terms might be: element, xml.

<offtopic_keywords> Terms that are likely to appear in documents retrieved by the query, while at the
same time are not likely to appear in relevant documents. Some queries are genuinely ambiguous and
such terms can be used to disambiguate the correct from incorrect interpretation of the query. For
example, if the user is searching for information about element retrieval and the query has the title INEX
then off-topic terms might be: neutral, biopharmaceutical, nanotechnology

4.2.1 Topic <title>
To ensure topics are syntactically correct, a parser has been implemented in Flex and Bison (the GNU
tools compatible with LEX and YACC) and is available for download or online use (see
http://metis.otago.ac.nz/abin/nexi.cgi)

The topic title is a short representation of the information need. Each term is either a word or a phrase.
Phrases are encapsulated in double quotes. Furthermore the terms can have either the prefix + or –,
where + is used to emphasize an important concept, and – is used to denote an unwanted concept.

Example
A user wants to retrieve information about computer science degrees that are not master degrees:

"computer science" +degree –master

the + and – signs are used as hints to the search engine and do not have strict semantics. As an example
the following text might be judged relevant to the information need, even though it contains the word
master.

The university offers a program leading to a PhD degree in computer science.
Applicants must have a master degree…

Example
A user wants to retrieve information about IR from semi-structured documents:

"information retrieval" +semi-structured documents

As in the previous example the following text might be judged relevant, even though it neither contains
the word semi-structured, nor the phrase “information retrieval”.

The main goal of INEX is to promote the evaluation of content-oriented XML retrieval
by providing a large test collection of XML documents, uniform scoring procedures, and
a forum for organizations to compare their results…

Although the semantics of phrases and the + / – tokens is not strict, they may be of use to the retrieval
engine.

376

http://metis.otago.ac.nz/abin/nexi.cgi

4.2.2 Topic <castitle>
As structural constraints are not an inherent part of all information needs the <castitle> is optional.
However, we aim at having topics for INEX 2006 where the majority of topics do include a castitle.
This is needed in order to facilitate the evaluation of structural hints, which is a central concern at
INEX.

Only a high level description is included here, for a more formal specification of the topic description
language (NEXI) see the INEX web-site or in the proceedings of INEX 2004 [1].

To make sure that topics are syntactically correct, parsers have been implemented in Flex and Bison
(the GNU tools compatible with LEX and YACC) and are available for download. An online version of
the parser is also available: http://metis.otago.ac.nz/abin/nexi.cgi

Castitles are XPath (http://www.w3c.org/TR/xpath) expressions of the form:

A[B]

or

A[B]C[D]

where A and C are navigational XPath expressions using only the descendant axis. B and D are
predicates using about functions for text (explained below); the arithmetic operators <, <=, >, and >= for
numbers; and the connectives and and or. The about function has (nearly) the same syntax as the XPath
function contains. Usage is restricted to the form:

about(.path, query)

where path is empty or contains only tag-names and descendant axis; and query is an IR query having
the same syntax as the CO titles (i.e. query terms). The about function denotes that the content of the
element located by the path is about the information need expressed in the query. As with the title, the
castitle is only a hint to the search engine and does not have definite semantics.

Example
A user wants to know about Tolkien’s languages and assumes an article on Tolkien will have a section
discussing these languages:

//article[about(., Tolkien)]//section[about(., language)]

But the user might be happy with retrieving whole articles. In the formalism expressed above,

A = //article
B = about(., Tolkien)
C = //section
D = about(., language)

A CAS query contains two kinds of structural hints: where to look (support elements; in this case
//article and //section), and which elements to return (target elements; in this case //article//section). In
prior INEX workshops the target element hint has been interpreted either strictly or loosely (vaguely).
Where to look has always been interpreted loosely. This created considerable debate over how to
interpret where to look. There is the database view: all structural constraints must be followed strictly
(by exact match). Then there is the information retrieval view: an element is relevant if it satisfies the
information need, irrespective of the structural constraints.

The main purpose of the INEX initiative is to build a test collection for the evaluation of content
oriented XML retrieval. The most valuable part of the collection is the human made relevance
assessments. Thus, each structured query must have at least one about function in the rightmost
predicate.

377

http://metis.otago.ac.nz/abin/nexi.cgi
http://www.w3c.org/TR/xpath

4.2.3 Topic <description>
The <description> should be precise and concise, but it must contain the same terms and the same
structural requirements that appear in the <title> and the <castitle>, albeit expressed in natural language.

Example
A user wants to retrieve information about computer science degrees that are not master degrees and
has chosen the title query:

"computer science" +degrees -master

for the <title>. From this they might choose a <description> of either:

retrieve information about degrees in computing science, but not masters degrees

or

I want descriptions of computer science degrees that are not master degrees

as they are equivalent, but:

get information about computing degrees, but not about master or PhD computing degrees

cannot be chosen as it expresses a different information need - there is an additional requirement that
information about PhD degrees is not sought.

It is important to compare results that are based on natural language queries (the <description>) with
queries that are based on the more formal languages (the <title>, and <castitle>). The description must,
therefore, be as informative as the <title> and <castitle>.

5 Procedure for Topic Development
Each participating group will have to submit 6 CO+S topics by the 21st April 2006. Submission is done
by filling in the Candidate Topic Submission Form on the INEX web site:
http://inex.is.informatik.uni-duisburg.de/2006/ under Tasks/Tracks → Adhoc → Topics.

The topic creation process is divided into several steps. When developing a topic, use a print out of the
online Candidate Topic Form to record all information about the topic you are creating.

Step 1: Initial Topic Statement
Create a one or two sentence description of the information you are seeking. This should be a simple
description of the information need without regard to retrieval system capabilities or document
collection peculiarities. This should be recorded in the Initial Topic Statement field. Record also the
context and motivation of the information need, i.e. why the information is being sought. Add to this a
description of the work-task, that is, with what task it is to help (e.g. writing an essay on a given topic).

Step 2: Exploration Phase
In this step the initial topic statement is used to explore the collection. Obtain an estimate of the
number of relevant elements then evaluate whether this topic can be judged consistently. You may use
any retrieval engine for this task, including your own or the TopX system
(http://infao5501.ag5.mpi-sb.mpg.de:8080/topx/), provided through the INEX website.

While exploring the collection make a list of the on-topic and off-topic terms that might be used to
distinguish between relevant and irrelevant results retrieved by the search engine.

Step 2a: Assess Top 25 Results
Judge the top 25 retrieval results. To assess the relevance of a retrieved element use the following
working definition: mark it relevant if it would be useful if you were writing a report on the subject of
the topic, or if it contributes toward satisfying your information need. Each result should be judged on
it own merits. That is, information is still relevant even if it is the thirtieth time you have seen the same
information. It is important that your judgment of relevance is consistent throughout this task. Using

378

http://inex.is.informatik.uni-duisburg.de/2006/
http://infao5501.ag5.mpi-sb.mpg.de:8080/topx/

the Candidate Topic Submission Form record the number of found relevant elements and the path
representing each relevant element. Then if there are:

• fewer than 2 or more than 20 relevant within the top 25, abandon the topic and use a new one,
• more than 2 and fewer than 20 relevant within the top 25, perform a feedback search (see below).

Step 2b: Feedback Search
After assessing the top 25 elements, you should have an idea of which terms (if any) could be added to
the query to make the query as expressive as possible for the kind of elements you wish to retrieve.
You should also have an idea of which terms could be used to disambiguate relevant from irrelevant
results.

Use the expanded query, to retrieve a new list of candidates. Judge the top 100 results (some are
already judged), and record the number of relevant results in Candidate Topic Form. Record the
expanded query in the title field of the Candidate Topic Submission Form. Now record the on-topic and
off-topic terms on the Candidate Topic Submission Form.

Step 3: Write the <narrative>
Having judged the top 100 results you should have a clear idea of what makes a component relevant or
not. It is important to record this in minute detail as the <narrative> of the topic. The <narrative> is the
definitive instruction used to determine relevance during the assessment phase (after runs have been
submitted). Record not only what information is being sought, but also what makes it relevant or
irrelevant. Also record the context and motivation of the information need. Include the work-task,
which is: the form the information will take after having been found (e.g. written report). Make sure
your description is exhaustive as there will be several months between topic development and topic
assessment.

Step 4 CO+S: Optionally write the <castitle>
Optionally re-write the title by adding structural constraints and target elements. Record this as the
<castitle> on the Candidate Topic Submission Form. Also record why you think the structural hints
might help in the <narrative>. Please note that we aim at having castitles in most topics.

Step 5: Write the <description>
Write the <description>, the natural language interpretation of the query. Ensure the information need
as expressed in the <title>, and <castitle> is also expressed in the <description>. Make sure the
<description> does not express any additional information needs.

Step 6: Add ontopic and offtopic keywords
Based on the documents you have seen, add a set of ontopic keywords (terms that are likely to be found
in relevant documents and elements), and offtopic keywords (terms that are likely to be found in
irrelevant documents and elements). The more terms the better.

Step 7: Refining Topic Statements
Finalize the topic <title>, <castitle>, <description>, and <narrative>. It is important that these parts all
express the same information need; it should be possible to use each part of a topic in a stand-alone
fashion (e.g. title for retrieval, description for NLP, etc.). In case of dispute, the <narrative> is the
definitive definition of the information need – all assessments are made relative to the <narrative> and
the <narrative> alone.

Step 8: Topic Submission
Once you are finished, fill out and submit the on-line Candidate Topic Submission Form on the INEX
website http://inex.is.informatik.uni-duisburg.de/2006/ under Tasks/Tracks → Adhoc → Topics. After
submitting a topic you will be asked to fill out an online questionnaire (this should take no longer than
5-10 minutes). It is important that this is done as part of the topic submission as the questions relate to
the individual topic just submitted and the submission process. This is part of an effort to collect more
context for the INEX topics as discussed at the Dagstuhl workshop.

Please make sure you submit all candidate topics no later than the 21st April 2006.

379

http://inex.is.informatik.uni-duisburg.de/2006/

6 Topic Selection
From the received candidate topics, the INEX organizers will decide which topics to include in the
final set. This is done to ensure inclusion of a broad set of topics. The data obtained from the collection
exploration phase is used as part of the topic selection process. The final set of topics will be
distributed for use in retrieval and evaluation.

7 Acknowledgments
The topic format proposed in this document is based on the outcome of working groups set up during
previous INEX workshops along with the online discussions they created. We are very grateful for this
contribution. This document is a modified version of the topic development guides from previous
INEX workshops additionally authored by Börkur Sigurbjörnsson, Shlomo Geva, Mounia Lalmas, and
Saadia Malik.

References
[1] Trotman, A., & Sigurbjörnsson, B. (2004). Narrowed Extended XPath I (NEXI). In Proceedings of

the INEX 2004 Workshop, (pp. 16-40).

Appendix 1: Example CO+S Topic
<inex_topic query_type="CO+S">
<title>Tolkien languages "lord of the rings"</title>
<castitle>//article[about(., Tolkien) or about(., "lord of the rings")]//sec[about(.,
Tolkien languages)]</castitle>
<description>Find information about Tolkien languages from the Lord of the
Rings.</description>
<narrative>The "Lord of the Rings" movie trilogy fascinate me. I have learned from
other fans that the languages spoken by e.g., elves and dwarfs in the screen version
are not just the usual effects. Apparently, these languages were invented by Tolkien
himself and are central to his work with the original books.
For my own personal interest, I would like to learn more background about Tolkien's
artificial languages, and how they have affected the world portrayed in the Lord of
the Rings universe. Later I may want to add a section on the influence languages to my
Lord of the Rings fan web page. As Tolkien's languages seem to be a rather specialized
topic, I expect to find relevant information as elements in larger documents that deal
with Tolkien or Lord of the Rings, e.g., as sections in documents about Tolkien or the
Lord of the Rings (although I would be pleasantly surprised to see whole documents on
the topic of Tolkien's languages).
To be relevant an element should discuss Tolkien's artificial languages and their
influence on the Lord of the Rings books or movies. Information on the languages alone
without explicit discussion of their impact on the books or movies is not relevant;
nor is general information on Tolkien or the Lord of the Rings.</narrative>
<ontopic_keywords>"High Elvish" ; Quenya ; Sindarin</ontopic_keywords>
<offtopic_keywords>inspired, film</offtopic_keywords>
</inex_topic>

380

INEX 2006 Retrieval Task and
Result Submission Specification
Charlie Clarke, Jaap Kamps, Mounia Lalmas

Saturday, May 20, 2006

1 Retrieval Task

The retrieval task to be performed by the participating groups of INEX 2006 is defined
as the ad-hoc retrieval of XML elements. In information retrieval (IR) literature, ad-
hoc retrieval is described as a simulation of how a library might be used, and it involves
the searching of a static set of documents using a new set of topics. While the principle
is the same, the difference for INEX is that the library consists of XML documents, the
queries may contain both content and structural conditions and, in response to a query,
arbitrary XML elements may be retrieved from the library.

The general aim of an IR system is to findrelevant informationfor a given topic
of request. In the case of XML retrieval there is, for each article containing relevant
information, a choice from a whole hierarchy of different elements to return. Hence,
within XML retrieval, we regard asrelevant elementsthose XML elements that both

• contain relevant information (the element exhaustively discusses the topic), but

• do not contain non-relevant information (the element is specific for the topic).

That is, if an XML element contains another element but they have the same amount
of relevant text, the shorter element is strictly more specific and a preferred result.

Within the ad-hoc XML retrieval task we define the following four sub-tasks:

1. THOROUGH TASK asks systems to estimate the relevance of elements in the
collection.

2. FOCUSEDTASK asks systems to return a ranked list of elements to the user.

3. RELEVANT IN CONTEXT TASK asks systems to return relevant elements clus-
tered per article to the user.

4. BEST IN CONTEXT TASK asks systems to return articles with one best entry
point to the user.

1.1 THOROUGH TASK

1.1.1 Motivation for the Task

The core system’s task underlying most XML retrieval strategies is the ability to es-
timate the relevance of potentially retrievable elements in the collection. Hence, the
INEX 2006 THOROUGHTASK simply asks systems to return elements ranked by their
relevance to the topic of request. Since the retrieved elements are meant for further pro-
cessing (either by a dedicated interface, or by other tools) there are no display-related
assumptions nor user-related assumptions underlying the task.

What we hope to learn from this task is: How well are systems capable of estimat-
ing the relevance of XML elements? How well are systems capable of locating all the
relevant elements in the collection? How do structural constraints in the query help
retrieval?

381

1.1.2 Results to Return

The aim of the THOROUGH TASK is to find all relevant elements ranked in relevance
order. It will be therefore the case that, due to the nature of relevance in XML retrieval
(e.g. if a child element is relevant, so will be its parent, although to a greater or lesser
extent), an XML retrieval system that has estimated an element to be relevant may de-
cide to return all its ancestor elements. This means that runs for this task may contain a
large number of overlapping elements. It is however a challenge to rank these elements
appropriately.

Summarizing: THOROUGHTASK returns elements ranked in relevance order (where
specificity is rewarded). Overlap is permitted.

1.2 FOCUSED TASK

1.2.1 Motivation for the Task

A continuation of the Focused retrieval strategy from INEX 2005, the scenario under-
lying the FOCUSEDTASK is to return to the user a ranked-list of elements for her topic
of request. The INEX 2006 FOCUSED TASK asks systems to find the most focused
elements that satisfy a (focused) information need, without returning “overlapping” el-
ements. That is, for a given topic, no element in the result set may contain text already
contained in another element. Or, in terms of the XML tree, no element in the result
set should be a child or descendant of another element. The task makes a number of
assumptions:

Display the results are presented as a ranked-list of elements to the user.

Users view the result list top-down, one-by-one. Users do not want overlapping ele-
ments in the result-list, and prefer smaller elements over larger ones (if equally
relevant). User is mostly concerned with what happens at the early ranks.

What we hope to learn from this task is: How does the user-oriented FOCUSEDTASK

differ from system-oriented THOROUGH TASK? Can the FOCUSEDTASK be reduced
to a straightforward filter on the THOROUGH TASK? What techniques are effective at
the early ranks? How do structural constraints in the query help retrieval?

1.2.2 Results to Return

The aim of the FOCUSEDTASK is to return a ranked-list of elements, where no element
may be overlapping with any other element. Hence the decision to return a particular
element to the user will outlaw all its ancestors, as well as all its descendants to be re-
turned. Since all these ancestors and possibly also the descendants are relevant (be it to
a lesser or greater extent) it is however a challenge to chose the elements appropriately.
Please note that submitted runs containing overlapping elements will be disqualified.

Summarizing: FOCUSEDTASK returns elements ranked in relevance order (where
specificity is rewarded). Overlap isnot permitted in the submitted run.

1.3 RELEVANT IN CONTEXT TASK

1.3.1 Motivation for the Task

The scenario underlying the RELEVANT IN CONTEXT TASK is to return the relevant
information (captured by a set of elements) within the context of the full article. As

382

a result, an article devoted to the topic of request, will contain a lot of relevant infor-
mation across many elements. The INEX 2006 RELEVANT IN CONTEXT TASK asks
systems to find a set of elements that corresponds well to (all) relevant information in
each article. The task make a number of assumptions:

Display results will be grouped per article, in their original document order, providing
access through further navigational means.

Users consider the article as the most natural unit, and prefer an overview of relevance
in their context.

What we hope to learn from this task is: How does the user-oriented RELEVANT IN

CONTEXT TASK differ from THOROUGH TASK? What techniques are effective at
locating relevance within articles? How do structural constraints in the query help
retrieval?

The RELEVANT IN CONTEXT TASK is based on the INEX 2005 Fetch-And-Browse
retrieval strategy.

1.3.2 Results to Return

The aim of the RELEVANT IN CONTEXT TASK is to first identify relevant articles (the
fetching phase), and then to identify the relevant elements within the fetched articles
(the browsing phase). In the fetching phase, articles should be ranked according to
their topical relevance. In the browsing phase, we have a set of elements that cover
the relevant information in the article. The//article[1] element itself need not
be returned, but is implied by any result from a given article. Since the content of
an element is fully contained in its parent element and ascendants, the set maynot
contain overlapping elements.Please note that submitted runs containing results from
interleaved articles will be disqualified, as will submitted runs containing overlapping
elements.

Summarizing: RELEVANT IN CONTEXT TASK returns a ranked list of articles. For
each article, it returns an unrankedset of elements, covering the relevant material in
the article. Overlap is not permitted.

1.4 BEST IN CONTEXT TASK

1.4.1 Motivation for the Task

The scenario underlying the BEST IN CONTEXT TASK is to find the best-entry-point for
starting to read articles with relevance. As a result, even an article completely devoted
to the topic of request, will only have one best starting point to read. The INEX 2006
BEST IN CONTEXT TASK asks systems to find the XML elements that corresponds to
these best-entry-points. The task make a number of assumptions:

Display single result per article.

Users consider the article as the most natural unit, and prefer to be guided to the best
point to start to read the most relevant content.

What we hope to learn from this task is: How does the BEST IN CONTEXT TASK

differ from the RELEVANT IN CONTEXT TASK? How do best-entry points relate to
the relevance of elements (and THOROUGH TASK and FOCUSED TASK)? How do
structural constraints in the query help retrieval?

383

The BEST IN CONTEXT TASK is also based on the INEX 2005 Fetch-And-Browse
retrieval strategy.

1.4.2 Results to Return

The aim of the BEST IN CONTEXT TASK is to first identify relevant articles (the fetch-
ing phase), and then to identify the element corresponding to the best entry points for
the fetched articles (the browsing phase). In the fetching phase, articles should be
ranked according to their topical relevance. In the browsing phase, we have a single
element whose opening tag corresponds to the best entry point for starting to read the
relevant information in the article. Note that there is no implied end-point: if (the start
of) a paragraph is returned, it’s not indicating that the reader should stop at the end of
the paragraph. The//article[1] element itself may be returned in case it is the
best entry point, otherwise it will implied by any result from a given article.Please
note that submitted runs containing multiple results per article will be disqualified.

Summarizing: BEST IN CONTEXT TASK returns a ranked list of articles. For each
article, it returns asingleelement, representing the best entry point for the article with
respect to the topic of request.

1.5 Structured Queries

Queries with content-only conditions (CO queries) are requests that ignore the docu-
ment structure and contain only content related conditions, e.g. only specify what an
element should be about without specifying what that component is. The need for this
type of query for the evaluation of XML retrieval stems from the fact that users may
not care about the structure of the result components or may not be familiar with the
exact structure of the XML documents. CAS queries are more expressive topic state-
ments that contain explicit references to the XML structure, and explicitly specify the
contexts of the user’s interest (e.g. target elements) and/or the context of certain search
concepts (e.g. containment conditions). More precisely, a CAS query contains two
kinds of structural constraints: where to look (i.e. the support elements), and what to
return (i.e. the target elements). The structural constraints are considered as structural
hints, and similar to CO queries the elements will be assessed using the〈narrative 〉
part of the topics. Runs using CO queries and runs using CAS queries will be merged
to create the assessment pool (this will in fact improve the pool quality).

At INEX 2006. there is no separate CAS task, but the vast majority of topics have
both a keyword CO query and a structured CAS query.1 As noted above, for all the
tasks, we want to find out if, when and how the structural constraints in the query have
an impact on retrieval effectiveness. Although both types of queries may be used for
each task, mixing runs with both query types, the best performing CAS query runs
(restricted to topics containing a CAS query) will be reported. The use of CO/CAS
query fields is recorded in submission format.

2 Result Submission

Fact sheet:
1Of course, any CO query can be directly rephrased as a CAS query//*[about(.," CO query"]

using the tag wildcard* that matches any element.

384

• For all four tasks, we allow up to 3 CO submissions, and up to 3 CAS submis-
sions. That is, a participant can never submit more than 24 runs in total.

• All participants are required to submit a title-only run (free choice between the
CO title and the CAS title) for the THOROUGHTASK.

• There is a common format for all submission files (details below), which allows
up to 1,500 elements per topic.

• There are additional requirements on the submissions for three out of the four
tasks:

– FOCUSEDTASK: for the same topic, results may not be overlapping.

– RELEVANT IN CONTEXT TASK: articles may not be interleaved, and re-
sults may not be overlapping.

– BEST IN CONTEXT TASK: only one singleresult per article is allowed.

Runs that violate these requirements in any way, will be disqualified.

2.1 INEX 2006 Topics
There is only one set of topics to be used for all ad-hoc retrieval tasks at INEX 2006.
The format of the topics is defined in the following DTD:

<!ELEMENT inex_topic
(title,castitle?,description,narrative,ontopic_keywords)>

<!ATTLIST inex_topic
id CDATA #REQUIRED
ct_no CDATA #REQUIRED

>
<!ELEMENT title (#PCDATA)>
<!ELEMENT castitle (#PCDATA)>
<!ELEMENT parent (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT ontopic_keywords (#PCDATA)>

The submission format will record the precise topic fields that are used in a run.
Participants are allowed to use all fields, but only runs using either the〈title 〉,
〈castitle 〉, or 〈description 〉 fields, or a combination of these, will be regarded
as trulyautomatic, since the additional fields will not be available in operational set-
tings.

The 〈title 〉 part of the INEX 2006 topics should be used as queries for the CO
submissions. The〈castitle 〉 part of the INEX 2006 topics should be used as queries
for the CAS submissions. In the number of runs allowed to be submitted, runs using
more fields than the〈title 〉 (or 〈castitle 〉) will still be regarded as an CO (or
CAS) submission.

Since the comparative analysis of CO and CAS queries is a main research question
at INEX 2006, we encourage participant to submit runs using only the〈title 〉 field
(CO query) or only the〈castitle 〉 field (CAS query). We do not outlaw the use of
the other topic fields, to allow participants to conduct their own experiments involving
them, and since such deviating runs may in fact improve the quality of the assessment
pool.

385

2.2 Runs

There is an obligatory run, which is a submission to the THOROUGHTASK, using only
the short topic statement from either the〈title 〉 or the 〈castitle 〉 field of the
topics.

For each of the four tasks, we allow up to 3 CO submissions, and up to 3 CAS
submissions. The results of one run must be contained in one submission file (i.e. up
to 24 files can be submitted in total). A submission may contain up to 1,500 retrieval
results for each of the INEX topics included within that task.

There are however a number of additional task-specific requirements.
For the THOROUGHTASK there are no further restrictions.
For the FOCUSED TASK, it is not allowed to retrieve elements than contain text

already retrieved by another element. That is, within the same article, the element
//article[1]//section[1] is disjoint from//article[1]//section[2] ,
but overlapping with all ancestors (e.g.,//article[1]) and all descendants (e.g.,
//article[1]//section[1]//p[1]).

For the RELEVANT IN CONTEXT TASK, articles may not be interleaved. That is, if
an element of articlea is retrieved, and then an element of a different articleb, then it is
not allowed to retrieve further elements from articlea. Additionally, it is not allowed to
retrieve elements than contain text already retrieved by another element (similar to the
FOCUSEDTASK). Note also that for this task the//article[1] element is implied
by any element of the article, and need not be returned.

For the BEST IN CONTEXT TASK, only a single element per article is allowed. The
//article[1] element may be returned in case it is regarded as the best place to
start reading, otherwise it is implied by any other element from this article. Note that
for this task, the//article[1] element may be returned in case it is regarded as
the best element to start reading the relevant information in the article, otherwise it will
be implied by any element of the article.

2.2.1 Submission format

For relevance assessments and the evaluation of the results we require submission files
to be in the format described in this section. The submission format for all tasks is
defined in the following DTD:

<!ELEMENT inex-submission (topic-fields, description, collections, topic+)>
<!ATTLIST inex-submission

participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (Thorough | Focused | AllInContext | BestInContext) #REQUIRED
query (automatic | manual) #REQUIRED

>
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields

title (yes|no) #REQUIRED
castitle (yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED
ontopic_keywords (yes|no) #REQUIRED

>
<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic topic-id CDATA #REQUIRED >
<!ELEMENT collections (collection+)>
<!ELEMENT collection (#PCDATA)>
<!ELEMENT result (in?,file, path, rank?, rsv?)>
<!ELEMENT in (#PCDATA)>
<!ELEMENT file(#PCDATA)>

386

<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (avail-
able at the INEX web-sitehttp://inex.is.informatik.uni-duisburg.
de/2006/ShowParticipants.html), a run ID (which must be unique for the
submissions sent from one organization – also please use meaningful names as much as
possible), the identification of the task (e.g. Thorough, Focused, etc), and the identifi-
cation of whether the query was constructed automatically or manually from the topic.
Furthermore, the used topic fields must be indicated in the〈topic-fields 〉 tag.
Furthermore each submitted run must contain a description of the retrieval approach
applied to generate the search results. A submission contains a number of topics, each
identified by its topic ID (as provided with the topics).

For compatibility with the heterogeneous collection track, the〈collections 〉
tag is mandatory. There should be with〈collections 〉 at least one〈collection 〉
tag, which is by default set to ”wikipedia” for the ad hoc track. The〈in 〉 tag is optional
for the ad hoc track (〈in 〉 states from which collection each result comes from).

For each topic a maximum of 1500 result elements may be included per task. A
result element is described by a file name and an element path, and it may include
rank and/or retrieval status value (rsv) information. For the ad hoc retrieval task,
〈collection 〉 is set to ”wikipedia”. Here is a sample submission file for the THOR-
OUGH TASK:
<inex-submission participant-id="12" run-id="VSM_Aggr_06"

task="Thorough" query="automatic">
<topic-fields title="no" castitle="yes" description="no"

narrative="no" ontopic_keywords="no"/>
<description>Using VSM to compute RSV at leaf level combined with

aggregation at retrieval time, assuming independence and using
augmentation weight=0.6.</description>

<collections>
<collection>wikipedia</collection>

</collections>
<topic topic-id="01">

<result>
<file>9996</file>
<path>/article[1]</path>
<rsv>0.67</rsv>

</result>
<result>

<file>9996</file>
<path>/article[1]/name[1]</path>
<rsv>0.1</rsv>

</result>
[...]

</topic>
<topic topic-id="02">

[...]
</topic>
[...]

</inex-submission>

Rank and RSV The rank and rsv elements are provided for submissions based on a
retrieval approach producing ranked output. The ranking of the result elements can be
described in terms of:

• Rank values, which are consecutive natural numbers, starting with 1. Note that
there can be more than one element per rank.

• Retrieval status values (RSVs), which are positive real numbers. Note that there
may be several elements having the same RSV value.

387

http://inex.is.informatik.uni-duisburg.de/2006/ShowParticipants.html
http://inex.is.informatik.uni-duisburg.de/2006/ShowParticipants.html

Either of these methods may be used to describe the ranking within a submission. If
both rank and rsv are given, the rank value is used for evaluation. These elements may
be omitted from a submission if a retrieval approach does not produce ranked output.

File and path Since XML retrieval approaches may return arbitrary XML nodes
from the documents of the INEX collection, we need a way to identify these nodes
without ambiguity. Within INEX submissions, elements are identified by means of
a file name and an element (node) path specification, which must be given in XPath
syntax. The file names in the Wikipedia collection uniquely define an article, so there
is no need for including the directory in which the file resides (in contrast with the
earlier IEEE collection). The extension .xml must be left out. Example:

9996

Element paths are given in XPath syntax. To be more precise, only fully specified paths
are allowed, as described by the following grammar:
Path ::= ’ / ’ ElementNode Path| ’ / ’ ElementNode| ’ / ’ AttributeNode
ElementNode::= ElementNameIndex
AttributeNode::= ’@’ AttributeName
Index ::= ’ [’ integer ’] ’

Example:

/article[1]/body[1]/section[2]/p[1]

This path identifies the element which can be found if we start at the document root,
select the first ”article” element, then within that, select the first ”body” element, within
which we select the second ”section” element, and finally within that element we select
the first ”p” element. Important: XPath counts elements starting with 1 and takes into
account the element type, e.g. if a section had a title and two paragraphs then their
paths would be given as: ../title[1], ../p[1] and ../p[2].

A result element may then be identified unambiguously using the combination of
its file name and element path. Example:

<result>
<in>wikipedia</in>
<file>9996</file>
<path>/article[1]/body[1]/section[2]/p[1]</path>

</result>

2.3 Result Submission Procedure

To submit a run, please use the following link:http://inex.is.informatik.
uni-duisburg.de/2006/ Then go to Tasks/Tracks, Adhoc, Submissions. The
online submission tool will be available soon.

388

http://inex.is.informatik.uni-duisburg.de/2006/
http://inex.is.informatik.uni-duisburg.de/2006/

1. Introduction
During the retrieval runs, participating organisations evaluated the 125 INEX 2006 topics (CO+S)
against the Wikipedia document collection and produced a list (or set) of document components (XML
elements1) as their retrieval results for each topic. The top 1500 components in a topic’s retrieval
results were then submitted to INEX. The submissions received from the different participating groups
have now been pooled and redistributed to the participating groups (to the topic authors whenever
possible) for relevance assessment. Note that the assessment of a given topic should not be regarded as
a group task, but should be provided by one person only (e.g. by the topic author or the assigned
assessor).

The aim of this guide is to outline the process of providing relevance assessments for the INEX 2005
test collection. This requires first a definition of relevance (Section 2), followed by details of how to
assess (Section 3). Finally, we describe the on-line relevance assessment system that should be used to
record your assessments (Section 4).

2. Relevance in INEX
Relevance in INEX is defined according to the notion of specificity, which describes the extent to
which the document component focuses on the topic of request. This definition was adopted after a
number of studies that showed that in terms of retrieval effectiveness, the same conclusions could be in
most cases generated from using the specificity dimension of relevance compared to using more
complex definitions. Up to INEX 2005, relevance was defined according to two dimensions, specificity
and exhaustivity. The latter describes the extent to which the document component discusses the topic
of request. This year, only the specificity dimension is used. Its measuring is based on the highlighting
procedure used in INEX 2005. The main advantage of this highlighting approach is the specificity of
any (partially highlighted) elements can be calculated automatically as some function of the contained
relevant and irrelevant content (e.g. in the simplest case as the ratio of relevant content to all content,
measured in number of words or characters).

3. How to assess
The assessment process is to be done as follows. Assessors highlight text fragments that contain only
relevant information. It is important that only purely relevant information fragments get highlighted. To
decide which text to highlight, you should skim-read the whole article and identify any relevant
information as you go along. The on-line system can assist you in this task by highlighting keywords
(that are chosen using the interface) and pool elements (elements retrieved by participating systems)
within the article (see Section 5). If you highlight any part of a document, the document is considered
relevant and you should then select a so-called "best entry point" (BEP) of the document.

During the relevance assessment of a given topic, all parts of the topic specification should be
consulted in the following order of priority: narrative, topic description, and topic title. The narrative
should be treated as the most authoritative description of the user's information need, and hence it
serves as the main point of reference against which relevance should be assessed. In case there is
conflicting information between the narrative and other parts of a topic, the information contained in
the narrative is decisive. Note that it is not because that a term listed within the topic is not present in
an element that the element is not relevant. It may be that a component contains some or maybe all the
terms, but is irrelevant to the topic of the request. Also, there may be components that contain none of
the terms yet are relevant to the topic.

For the CO+S, the topic titles (may) contain structural constraints in the form of XPath expressions.
These structural conditions should be ignored during your assessment. This means that you should
assess the elements returned for a CO+S topic as whether they satisfy your information need (as
specified by the topic) with respect to the content criterion only.

1 The terms document component and XML element are used interchangeably.

INEX 2006 Relevance
Assessment Guide

389

You should judge each text fragment on its own merit! That is, a text fragment is still relevant even if it
is the twentieth you have seen the same information! It is imperative that you maintain consistency in
your judgement during assessment. Referring to the topic text from time to time will help you maintain
judgement consistency.

4. Using the on-line assessment system (X-Rai)
There is an on-line relevance assessment system (XML Retrieval Assessment Interface) provided at:

https://inex.lip6.fr/2006/adhoc

which allows you to view the pooled result set of the topics assigned to you for assessment, to browse
the Wikipedia document collection and to record your assessments. Use your INEX username and
password to access this system.

The assessment tool works with opera and recent "gecko" browsers: we highly recommend you to
use Opera (version 8 or up only; version 9 is recommended) available at http://www.opera.com. Other
compatible browsers are:

〈 Mozilla (version 1.7 or up) at http://www.mozilla.org/products/firefox/.
〈 Firefox (version 1 and up) at http://www.mozilla.org/products/mozilla1.x/.

Note that JavaScript must be enabled for the assessment tool to work and that the assessment tool is
not compatible with Internet Explorer. Any bug report should be submitted using the project
homepage (https://developer.berlios.de/projects/x-rai/) using the link in the “Links” menu of the
interface (Figure 1).

4.1. Home page
After logging in, you will be presented with the Home page (see Figure 1) listing the topic ID numbers
of the topics assigned to you for assessment (under the title “Choose a pool”). This page can always be
reached by clicking on the “X-Rai” link of the menu bar on any subsequent pages.

Each X-Rai page is composed of the following components:
〈 The menu bar, which is itself composed of four parts:

1. The login name (e.g. “demo” in Figure 1),
2. A list of menu items, which can be accessed by holding the mouse over the menu

label (e.g. “Links” in Figure 1.),
3. The location within X-Rai, where each location step is a hyperlink (in Figure 1, we

are at the root of the web site, so the only component of the location is “X-Rai”,
which is a link to the home page),

4. The menu bar may also contain a number of icons (displayed on the right hand side,
see Figure 2a). Click on one of these icons to display (or hide):

 Information about X-Rai.

 Toggle the help
〈 The main window.
〈 An optional status bar (see Figure 4), displayed only when assessing a pool, i.e. in pool, sub-

collection or article view (see relevant sections below) appears at the bottom of the window
and shows the number of unknown assessments you have to judge before completing assessing
the document (in Figure 4, there is only one unknown assessment).

〈 In the status bar, three arrows (, and) may be used to navigate quickly between the
elements to be assessed. You may also use the shortcut keys of 1 (left), 2 (up) and 3 (right).
The up arrow enables you to move to a level up in the hierarchy, e.g. from an article or a
collection part to its innermost enclosing part of the collection (you move in the opposite
direction by selecting a sub-collection or an article). The left arrow can be used to go to the
previous element to be assessed, while the right arrow to go to the next element to be assessed.

The on-line assessment system provides three main views (Sections 4.2 to 4.4):

1. Pool view,
2. Sub-collection view, and
3. Article view

390

Figure 2: Home page and menu bar

In the “Links” menu

〈 INEX 2006: link to the official INEX web site.
〈 X-Rai project: link to the development web site of X-Rai where you can submit bug reports or/and feature

requests.
〈 Guide: the latest version of this assessment guide.

4.2. Pool view

Clicking on a topic ID will display the Pool main page for that topic (see Figure 2a).

Here, a new menu item, “Pool”, appears on the menu bar at the top of the window.

Figure 2a. Pool view

Figure 2b. Pool menu:

Topic: displays topic
statement.
Keywords: to manipulate list
of words and phrases to
highlight.
History: show the last
viewed documents

391

Within the “Pool” menu (Figure 2b), with the “Topic” submenu item you can display the topic
statement in a popup window. This is useful as it allows you to refer to the topic text at any time during
your assessment.

The “Keywords” submenu item allows you to access a feature, where you can specify a list of words
or phrases to be highlighted when viewing the contents of an article during assessment. These cue
words or phrases can help you in locating potentially relevant texts within an article and may aid you in
speeding up your assessment (so add as many relevant cue words as you can think of!). You may edit,
add to or delete from your list of keywords at any time during your assessment (remember, however, to
refresh the currently assessed article to reflect the changes).

You may also specify the preferred highlighting colour for each and every keyword. After selecting the
“Keywords” menu item, a popup window will appear showing a table of coloured cells. A border
surrounding a cell signifies a colour that is already used for highlighting some keywords. Move the
mouse over a coloured cell to display the list of keywords that will be highlighted in that colour. To
edit the list of words or phrases for a given colour, click on the cell of your choice. You will be
prompted to enter a list of words or phrases (one per line) to highlight. You can choose three different
highlighting modes using the drop-down menu: using coloured fonts, drawing a border around the
phrase or using a background colour. Note that the words or phrases you specify will be matched
against the text in the assessed documents in their exact form, i.e. no stemming is performed.

The "History" item allows you to access the list of last viewed documents, which can be useful if you
want to go back to a wrongly assessed document.

Under the title “Collections” is the list of collections to be assessed. In INEX 2006 (ad hoc task) there
is only one such collection, the English Wikipedia collection.

The left or right arrows on the status bar move the focus to the previous or next collection, where there
is at least one element to assess (since there is only one collection, no change will occur).

Clicking the hyperlink of “Wikipedia (english)” will take you into the sub-collection view.

4.3. Sub-collection view
The sub-collection views allow you to browse the different sub-collections within the Wikipedia
collection. Sub-collections within Wikipedia are based on the alphabetical order, as depicted Figure 3.
The first link of the page let you browse the Wikipedia sub-collection starting from "" to "Ali Baba...".
This part will then be in turn divided into other sub-collections within the "" to "Ali Baba" range.
Eventually, the last sub-collection view will contain a list of Wikipedia documents. Note that this view
will show all articles within the collection, and not only those that need to be assessed.

For each possible sub-collection, there is an indication on the number of documents to be assessed in it
(if this number is greater than 0), both for documents that were initially in the pool and for documents
you choose to assess.

The left or right arrows on the status bar move the focus to the previous or next sub-collection, where
there is at least one document to assess. You can also directly click on a link to a sub-collection.

392

4.4. Article view
It is in this article view that elements can be assessed. The article view (see Figure 4) displays all the
XML elements of an article together with their content. There are two types of objects within an article
view: XML elements and passages. The latter are defined by the assessor while highlighting whereas
the former are predefined by the XML file. A highlighted passage in the interface has a yellow
background. Note that you should take care of not selecting colours for keyword highlighting too close
to the colour X-Rai uses to mark highlighted passages.

Figure 4. Article view

Figure 3. Sub-collection view

393

Highlighting

During the highlight phase, you should identify only relevant (i.e. totally specific) passages by
highlighting them. Passages can span over XML element boundaries. The passage limits are
predefined by a pre-processing of XML files and correspond “more or less” to sentence boundaries.
A consequence of this is that you should highlight the smallest passage that encloses the only
relevant information if the predefined boundaries do not correspond exactly to the totally specific
fragment.

To highlight a passage, select it with the mouse as you would do in any word processor or text
editor, and click on the square with the yellow background (or press “h”).

If you make an error, you can unhighlight it by selecting the non relevant passage and clicking on
the square with the white background (or press “u”).

Best Entry Point

Focussed structured document retrieval employs the concept of best entry point (BEP), which is
intended to provide optimal starting-point from which users can browse to relevant document
components. In INEX, you are requested to indicate one and only one BEP for every document that
that has relevant content (that has highlighted passages). No BEP should be defined if the document
is not relevant (i.e. does not contain any highlighted passage).

To set the BEP within a document (i.e. to be in the BEP mode), click on the button (or press b)
and then click on the position that you want to set as the BEP of that document. It is not possible to
set the BEP at an arbitrarily position within the document. The same constraints to those used for
highlighting apply for the BEP. In order to help you to know where the BEP will be located, when
the mouse pointer is over a Wikipedia text and that you clicked on the "target button", the BEP
symbol should appear at the position it would be set if you have clicked. Also note that there are
one and one only BEP per relevant document.

Note that although you can set the BEP at any moment, we recommend that you first highlight and
then set the BEP.

Figure 5. Status bar (article view only)

The disk icon (here disabled): saving your assessments
The disk icon with the left (respectively right) arrow: save (if
necessary) and goes to the previous (respectively next) document to
assess.
The up arrow allows you to go up to the sub-collection view.

The eye (if applicable): shows or hides the pool elements

The target is used to set the BEP. The stroked target is used to remove
the current BEP (if it is already defined for the document).

The mark reflects the status of the document: completely assessed and
validated (green), completely assessed but not validated (red), and not
completely assessed and not validated (grey). You can validate a
document (i.e., mark it as finished) only if the mark is red.

The yellow/white square permits to (un)highlight the selected passage.

The clipboard shows the boundaries of the currently selected passage
(as a couple of XPath expressions). This can be useful e.g. to submit
bug reports.

394

To remove any previously set BEP, simply click on (or press shift+b).

4.6. Saving your assessments

The assessment tool this year does not automatically save the assessments, but you NEED TO
SAVE YOUR RELEVANCE ASSESSMENTS by clicking on the disk icon:

The icon is disabled (grey shade) when all assessments are saved.

Be warned that Opera does not provide a way to prevent from exiting a page without saving
assessments. PLEASE ONLY USE THE INTERFACE TO NAVIGATE INTO THE SITE as this
is the only way to prevent you from leaving a page with non-saved assessment(s).

Icon Shortcut Action description

All views within a pool

1 Highlight the previous (sub)collection or document to assess.

2 Go to the container (sub-collection for an article, etc.)

3 Highlight the next (sub)collection or document to assess

Article view

control+s Save the current assessment

p Hide the pool elements

p Show the pool elements

b Set the BEP

shift+b Remove the BEP

shift + 9
Go to the previous article to assess.

shift + 0
Go to the next element to assess.

Article view - assessing

h Highlight the currently selected passage.

u Unhighlight the currently selected passage

f Mark the article as finished

f Mark the article as not finished

August 2006
Mounia Lalmas and Benjamin Piwowarski

!

395

Ï P�6Md{ÀÏ×iCÏø&��4Ï
KiC&yi��¤Ïø�Þ4Ï�õ#ÏKiÞ�¤CÏ
�¯ÝyÞÞy0õÏ[i�y�y��Cy0õÏ

Ï

Ï
Ï
Ï

Ï
Ï

PõÐ0ÏÍ&0ÝÝä0¤�Ï�õ#ÏK�WÏ��&Þ0õÏ
yõÐ0Q�&0ÝÝä0¤�h�õy�#�iQ#iÏ
&�WhÞyÝÞQ¯i&4i¤iWQi#�Ï

i[CiÝ¯i&Ï�À Ï�{{ÀÏ
Ï

KiC&yi��¤Ïø�Þ4ÞÏ
øäiÏ [&yÝ�&WÏ P�6MÏ CiÞCÏ �0¤¤i�Cy0õÏ yÞÏ ¯�Þi#Ï 0õÏ �Ï ÞyõÐ¤iÏ ÛøÛQÏ PõÏ [&��Cy��¤Ï iõ�y&0õÝiõCÞ�Ï Þ��äÏ �Ï
&iÞC&y�Cy0õÏòy¤¤Ïä0¤#ÏyõÏ&�&iÏ��ÞiÞÏ0õ¤WQÏPõÞCi�#�ÏÝ0ÞCÏM	�Ï�0¤¤i�Cy0õÞÏòy¤¤Ï�0õÞyÞCÏ0�Ï#0��ÝiõCÞÏ�&0ÝÏ
#y��i&iõCÏ Þ0�&�iÞ�Ï �õ#Ï Cä�ÞÏ òyCäÏ #y��i&iõCÏ ÛøÛÞÏ 0&Ï �äiÝ�ÞQÏ PõÏ �##yCy0õ�Ï #yÞC&y¯�Ci#Ï ÞWÞCiÝÞÏ
 �i#i&�Cy0õÞÏ0&Ï[ii&�C0�[ii&ÏÞWÞCiÝÞ7�Ïòäi&iÏi��äÏõ0#iÏÝ�õ�ÐiÞÏ�Ï#y��i&iõCÏCW[iÏ0�Ï�0¤¤i�Cy0õ�Ïòy¤¤Ïõii#Ï
C0Ï¯iÏÞi�&�äi#Ï�õ#Ï CäiÏ &iÞ�¤CÞÏ�0Ý¯yõi#QÏ P�Ï Cäi&iÏ yÞÏ�Ï ÞiÝ�õCy�Ï#y�i&ÞyCWÏ¯iCòiiõÏ CäiÏ�0¤¤i�Cy0õÞ�Ïõ0CÏ
i�i&WÏ �0¤¤i�Cy0õÏ yÞÏ Þ�yC�¯¤iÏ C0Ï Þ�CyÞ�WÏ CäiÏ �Þi&NÞÏ yõ�0&Ý�Cy0õÏ õii#QÏeõÏ CäiÏ 0Cäi&Ï ä�õ#�Ï |�i&WyõÐÏ i��äÏ
�0¤¤i�Cy0õÏyÞÏi�[iõÞy�iÏòQ&QCQÏ�0ÝÝ�õy��Cy0õÏ�0ÞCÞ�ÏÞ0Ï�Ï[&iÞi¤i�Cy0õÏ0�Ï�[[&0[&y�CiÏ�0¤¤i�Cy0õÞÏÞä0�¤#Ï
¯iÏ [i&�0&Ýi#QÏ 0Ï �Ï äiCi&0Ðiõi0�ÞÏ �0¤¤i�Cy0õÏ [0ÞiÞÏ �Ï õ�Ý¯i&Ï 0�Ï �ä�¤¤iõÐiÞÏ �0&Ï M	�Ï &iC&yi��¤QÏ øäiÏ
�0¤¤0òyõÐÏC�Þ4Ï#i�yõyCy0õÞÏC&WÏC0Ï�0[iÏòyCäÏÞ0ÝiÏ0�ÏCäiÝª Ï

Á#ä0�ÏØeÏø�Þ4Ï Øe7Ï
×i&i�Ï�0õCiõC�0&yiõCi#Ï|�i&yiÞÏ�&iÏ�[[¤yi#QÏøäiÏÞWÞCiÝÞÏ&iC�&õÏ�Ï&�õ4i#Ï¤yÞCÏ0�Ï#0��ÝiõCÞÏ�&0ÝÏ�¤¤Ï
�0¤¤i�Cy0õÞQÏÏ

ØÁÏø�Þ4ÏïÏ ØÁï7Ï
øäiÏÞWÞCiÝÏÞä0�¤#Ï&iC�&õÏ0õ¤WÏi¤iÝiõCÞÏÞ[i�y�yi#ÏyõÏ���ÞCyC¤i�QÏ
ØÁÏø�Þ4�Ï ØÁ�7Ï
øäiÏ ÞWÞCiÝÏ Þä0�¤#Ï ¯�Þy��¤¤WÏ &iC�&õÏ CäiÏ i¤iÝiõCÞÏ Þ[i�y�yi#Ï yõÏ Ï���ÞCyC¤i�Ï�Ï ¯�CÏ �¤Þ0Ï ÞyÝy¤�&Ï
i¤iÝiõCÞQÏ ÁÞÏ �õÏ i��Ý[¤i�Ï�#0�CyC¤i�Ï yõÏ�Û�iCÏ �õ#Ï Ï�CyC¤i�Ï yõÏ 0Cäi&Ï �0¤¤i�Cy0õÞÏ �&iÏ Ý0ÞCÏ
[&0¯�¯¤WÏ i|�y��¤iõCQÏ øäiÏ�#iÞ�&y[Cy0õ�Ï Ï yõÏ�Û�iC�Ïòäy�äÏ yÞÏ CäiÏ#iÞ�&y[Cy0õÏ Ð&�¯¯i#Ï �&0ÝÏKÏ
�ii#Þ�ÏyÞÏÞyÝy¤�&�Ï¯�CÏÏõ0CÏi|�y��¤iõC�ÏC0ÏCäiÏ��¯0�C�ÏC�ÐÏi¤Þiòäi&iQÏÁÏ[0ÞÞy¯¤iÏÞ�iõ�&y0Ïò0�¤#Ï¯iÏÏ�Ï
ÞWÞCiÝÏòäy�äÏ¤y4iÞÏC0Ï[&iÞiõCÏCäiÏ�Þi&Ï0õ¤WÏCäiÏCyC¤iÏ�õ#Ï�Ï&i[&iÞiõC�Cy�iÏÏÞ�ÝÝ�&WÏ0�ÏCäiÏ�0õCiõCÏÞ0ÏCä�CÏ
ÞäiÏ �0�¤#Ï #i�y#iÏ y�Ï �Ï #0��ÝiõCÏ yÞÏ &i¤i��õCÏ 0&Ï õ0CÏ òyCä0�CÏ äyÐäi&Ï �0ÐõyCy�iÏ 0�i&¤0�#Ï CäiÏ õii#Ï �0&Ï
&i�#yõÐÏCäiÏòä0¤iÏÏ�&Cy�¤i7QÏÍ�&Cäi&Ý0&i�ÏÞä0&CÏ�0ÝÝiõCÞÏ�0�¤#Ï¯iÏ[&iÞiõCi#Ïäi&iÏ�ÞÏòi¤¤Q Ï

KiÞ0�&�iÏi¤i�Cy0õÏ K7Ï
øäiÏÐ0�¤Ïäi&iÏyÞÏC0ÏÞi¤i�CÏ&i¤i��õCÏ&iÞ0�&�iÞÏ�0&Ï�ÏÐy�iõÏC0[y�QÏøäiÏÞWÞCiÝÏÞä0�¤#Ï&iC�&õÏ�Ï&�õ4i#Ï¤yÞCÏ0�Ï
�0¤¤i�Cy0õÞQÏ øäiÏ Þ�iõ�&y0Ï yÞÏ Cä�CÏ �Ï ÞWÞCiÝÏ Þä0�¤#Ï y#iõCy�WÏ &i¤i��õCÏ �0¤¤i�Cy0õÞÏ ¯i�0&iä�õ#Ï �õ#Ï |�i&WÏ
CäiÝ	ÏyõÞCi�#Ï0�Ï|�i&WyõÐÏ�¤¤Ï&iÞ0�&�iÞÏ òäy�äÏÝyÐäCÏ¯iÏi�[iõÞy�iÏòäiõÏyCÏ�0ÝiÞÏC0Ï�0ÝÝ�õy��Cy0õÏ0&Ï
���iÞÞÏ�0ÞCÞ7QÏ
Ï

KiÞ�¤CÏ�¯ÝyÞÞy0õÏ
Í0&Ïi��äÏC0[y�Ï�[ÏC0Ïï�Ï&�õÞÏÝ�WÏ¯iÏÞ�¯ÝyCCi#	Ï
Ï�0&Ïi��äÏC�Þ4QÏøäiÏ&iÞ�¤CÞÏ0�Ï0õiÏ&�õÏÝ�ÞCÏ¯iÏ�0õC�yõi#ÏyõÏ
0õiÏÞ�¯ÝyÞÞy0õÏ�y¤iÏ iQÐQÏ�[ÏC0Ï
Ï�y¤iÞÏ��õÏ¯iÏÞ�¯ÝyCCi#Ï�0&Ïi��äÏC�Þ47QÏÁÏÞ�¯ÝyÞÞy0õÏÝ�WÏ�0õC�yõÏ�[ÏC0Ïïb{{Ï
&iC&yi��¤Ï&iÞ�¤CÞÏ�0&Ïi��äÏ0�ÏCäiÏC0[y�ÞQ Ï

�¯ÝyÞÞy0õÏ�0&Ý�CÏ
Í0&Ï &i¤i��õ�iÏ �ÞÞiÞÞÝiõCÞÏ �õ#Ï CäiÏ i��¤��Cy0õÏ 0�Ï CäiÏ &iÞ�¤CÞÏòiÏ &i|�y&iÏ Þ�¯ÝyÞÞy0õÏ �y¤iÞÏ C0Ï ¯iÏ yõÏ CäiÏ
�0&Ý�CÏ#iÞ�&y¯i#ÏyõÏCäyÞÏÞi�Cy0õQÏøäiÏÞ�¯ÝyÞÞy0õÏ�0&Ý�CÏ�0&Ï�¤¤ÏC�Þ4ÞÏyÞÏ#i�yõi#ÏyõÏCäiÏ�0¤¤0òyõÐÏÛøÛª Ï
Ï
Ï

396

Ï

Ï��6�6	6�øÏyõi�äiCÞ�¯ÝyÞÞy0õÏ C0[y��yi¤#ÞÏ#iÞ�&y[Cy0õÏÏÏÏÏÏÏÏÏ Ï
ÏÏÏÏÏÏÏÏÏÏ�0¤¤i�Cy0õÞÏC0 [y��7�Ï��Áøø�P�øÏyõi�äiCÞ�¯ÝyÞÞy0õÏ
ÏÏ[�&Cy�y[�õCy#ÏØÛÁøÁÏ§K6¾ÕPK6ÛÏ
ÏÏ&�õy#ÏØÛÁøÁÏ§K6¾ÕPK6ÛÏ
ÏÏC�Þ4Ï ØeÏìÏØÁ�ïÏìÏØÁ��ÏìÏK�7Ï §K6¾ÕPK6ÛÏ
ÏÏ|�i&WÏ ��C0Ý�Cy�ÏìÏÝ�õ��¤7Ï §K6¾ÕPK6ÛÏ�Ï��6�6	6�øÏC0[y��yi¤#ÞÏ6	�ø��Ï��Áøø�P�øÏC0[y��yi¤#ÞÏ
ÏÏCyC¤iÏ WiÞìõ07Ï §K6¾ÕPK6ÛÏ
ÏÏ��ÞCyC¤iÏ WiÞìõ07Ï §K6¾ÕPK6ÛÏ
ÏÏ#iÞ�&y[Cy0õÏ WiÞìõ07Ï §K6¾ÕPK6ÛÏ
ÏÏõ�&&�Cy�iÏ WiÞìõ07Ï §K6¾ÕPK6ÛÏ
ÏÏ0õC0[y�14iWò0&#ÞÏ WiÞìõ07Ï §K6¾ÕPK6ÛÏ�Ï��6�6	6�øÏ#iÞ�&y[Cy0õÏ §�ØÛÁøÁ7�Ï��6�6	6�øÏC0[y�Ï &iÞ�¤CH7�Ï��Áøø�P�øÏC0[y�ÏC0[y�y#ÏØÛÁøÁÏ§K6¾ÕPK6ÛÏ�Ï��6�6	6�øÏ�0¤¤i�Cy0õÞÏ �0¤¤i�Cy0õH7�Ï��6�6	6�øÏ�0¤¤i�Cy0õÏ �0¤¤i�Cy0õy#Ï&�õ4_Ï&Þ�_Ï7�Ï��6�6	6�øÏ�0¤¤i�Cy0õy#Ï §�ØÛÁøÁ7�Ï��6�6	6�øÏ&iÞ�¤CÏ �0¤¤i�Cy0õy#Ï�y¤iÏ[�CäÏ&�õ4_Ï&Þ�_7�Ï��6�6	6�øÏ�y¤iÏ §�ØÛÁøÁ7�Ï��6�6	6�øÏ[�CäÏ §�ØÛÁøÁ7�Ï��6�6	6�øÏ&�õ4Ï §�ØÛÁøÁ7�Ï��6�6	6�øÏ&Þ�Ï §�ØÛÁøÁ7�Ï
Ï

Ï
Ï
øäiÏ��0¤¤i�Cy0õy#�Ïi¤iÝiõCÏyÞÏ�Þi#ÏC0ÏÞ[i�y�WÏCäiÏ�0¤¤i�Cy0õÏ�Ï&iÞ�¤CÏyÞÏyõQÏ��¤y#Ï�0¤¤i�Cy0õÏõ�ÝiÞÏ
�&iªÏ
Ï
¯i&4i¤iWÏÏÏÏÏÏ �Ï�i&4i¤iWÏ
¯y¯#¯[�¯ÏÏÏÏÏÏ�ÏÕõyÏÛ�yÞ¯�&ÐÏ�y¯Û�Ï
�0Ý[�Þ�yiõ�iÏÏ�ÏØ0Ý[��yiõ�iÏ
#¯¤[ÏÏÏÏÏÏÏÏÏÏ �ÏÛ���Ï
ä�y¯y¯ÏÏÏÏÏÏÏÏ �Ï×ØP�y¯Ï
|Ý�¤�Þ#¯[�¯ÏÏÏ�Ï¾	Õ�Ï�y¯Û�Ï
yiiiÏÏÏÏÏÏÏÏÏÏ �ÏP666Ï
�#õiC�&CÏÏÏÏÏÏ �Ï�Û�iCÏ�&Cy�¤iÞÏ
�#õiC�0ÝÏÏÏÏÏÏ�Ï�Û�iCÏ�0ÝÝiõCÞÏ
òy4y[i#y�ÏÏÏÏÏ�Ï»y4y[i#y�Ï
¤[ÏÏÏÏÏÏÏÏÏÏÏÏÏ �Ï�0õi¤WÏ�¤�õiCÏ
y#i�1iÝ¤ÏÏÏÏÏÏ�ÏPÛ6Á¤¤y�õ�iÏ6�C&iÝiÏ	�&4�[Ï��õÐ��ÐiÞÏÏ
y#i�1�Ý¤ïÏÏÏÏÏ�ÏPÛ6Á¤¤y�õ�iÏM	�Ï�{{�ÏÒÏ�{{�ÏÏ
y#i�1�Ý¤�ÏÏÏÏÏ�ÏPÛ6Á¤¤y�õ�iÏM	�Ï�{{éÏÒÏ�{{bÏÏ
y#i�1�Ý¤iÏÏÏÏÏ�ÏPÛ6Á¤¤y�õ�iÏM	�Ï6�&0[iÏ�{{�ÏÒÏ�{{éÏ
y#i�1�Ci�äÏÏÏÏ�ÏPÛ6Á¤¤y�õ�iÏMøi�äÏ�{{b�W�Ï
Ï
øäiÏ��0¤¤i�Cy0õÞ�ÏC�ÐÏÝyÐäCÏ¯iÏiÝ[CW�Ïi��i[CÏ�0&ÏCäiÏKÏC�Þ4Ï ÞiiÏ¯i¤0ò7Q Ï
Ï

�¯ÝyÞÞy0õÞÏ�0&ÏCäiÏKÏC�Þ4Ï
�¯ÝyÞÞy0õÞÏ�0&ÏCäiÏ&iÞ0�&�iÏÞi¤i�Cy0õÏC�Þ4Ï�0õC�yõÏ�õÏiÝ[CWÏ�C0[y��Ïi¤iÝiõCÏòyCäÏ.�ÞCÏCäiÏC0[y�ÏPÛ�Ï
iQÐQÏ
Ï
Ï
Ï

397

Ï

Ï
EÏ�C0[y�ÏC0[y��y#\sy#ï��s��Ï��0¤¤i�Cy0õÞ�Ï
ÏÏ��0¤¤i�Cy0õ�Ï
ÏÏÏÏ��0¤¤i�Cy0õy#�ä�y¯y¯���0¤¤i�Cy0õy#�Ï
ÏÏÏÏ�&Þ��{Q¡���&Þ��Ï
ÏÏ���0¤¤i�Cy0õ�Ï
ÏÏ��0¤¤i�Cy0õ�Ï
ÏÏÏÏ��0¤¤i�Cy0õy#�yiii���0¤¤i�Cy0õy#�Ï
ÏÏÏÏ�&Þ��{Q¡ï��&Þ��Ï
ÏÏ���0¤¤i�Cy0õ�Ï��0¤¤i�Cy0õÞ�Ï
EÏ
Ï
�¤i�ÞiÏ�ÞiÏCäiÏ�0¤¤i�Cy0õÏõ�ÝiÞÏ�¯0�iÏ�0&ÏCäiÏ��0¤¤i�Cy0õy#�ÏC�ÐQÏ

398

INEX 2006 Multimedia Track Guidelines

Thijs Westerveld Roelof van Zwol et al.∗

August 25, 2006

1 Introduction

Structured document retrieval allows for the retrieval of document fragments,
i.e., XML elements, containing relevant information. The main INEX ad-hoc
task focuses on text-based XML element retrieval. Although text is dominantly
present in most XML document collections, other types of media can also be
found in those collections. Existing research on multimedia information re-
trieval has already shown that it is far from trivial to determine the combined
relevance of a document that contains several multimedia objects. The objec-
tive of the INEX 2006 multimedia track is to exploit the XML structure that
provides a logical level at which multimedia objects are connected, to improve
the retrieval performance of an XML-driven multimedia information retrieval
system. This document serves as the guidelines for the track. We discuss the
track resources, tasks, topic development guidelines, run submission details and
assessment procedure.

2 Track resources

The resources used for the multimedia track are based on wikipedia data. For
each task, as described in Section 3, all resources can be used. The following six
resources are available. Detailed description of each of them and information
on how to obtain them are provided at the INEX MM track website at http:
//inex.is.informatik.uni-duisburg.de/2006/mmtrack.html.

Wikipedia Ad Hoc XML collection: This is the same collection that is used
for the INEX 2006 Ad Hoc track. The assumption is that a user will be
able to see images from the multimedia corpus in-place in the XML frag-
ments when assessing a fragment.

Wikipedia image collection: A subset of images referred to in the Wikipedia
Ad Hoc XML collection is chosen to form the Wikipedia image collection.
Note that (due to possible copyright issues) not all images referred to in

∗Based on prior MM and Ad Hoc guidelines [6] and [1].

399

the Ad Hoc collection are included in the multimedia corpus. Only the
multimedia corpus images are assumed to be available for the user.

Wikipedia image XML collection: This XML collection is specially pre-
pared for the Multimedia track. It consists of XML documents containing
image meta-data. See Figure 1 for an example document. The corre-
sponding image is given in Figure 2. Each document contains exactly one
image with (often) a short description. This corresponds with the infor-
mation that is also available on wikipedia, consider for instance: http:
//en.wikipedia.org/wiki/Image:AnneFrankHouseAmsterdam.jpg.

<?xml version="1.0"?>

<article>

<name id="1116948">AnneFrankHouseAmsterdam.jpg</name>

<image xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:actuate="onLoad"

xlink:show="embed"

xlink:href="../Pictures/AnneFrankHouseAmsterdam.jpg">

AnneFrankHouseAmsterdam.jpg</image>

<text>Anne Frank House - The Achterhuis - Amsterdam.

Photo taken by

<wikilink type="internal" parameters="2">

<wikiparameter number="0">

<value>User:Rossrs</value>

</wikiparameter>

<wikiparameter number="1" last="1">

<value>Rossrs</value>

</wikiparameter>

</wikilink>mid 2002

<wikitemplate parameters="1">

<wikiparameter number="0" last="1">

<value>PD-self</value>

</wikiparameter>

</wikitemplate>

<p />

<wikilink type="internal" parameters="1">

<wikiparameter number="0" last="1">

<value>es:Image:AnneFrankHouseAmsterdam.jpg</value>

</wikiparameter>

</wikilink>

<p />

<wikilink type="internal" parameters="1">

<wikiparameter number="0" last="1">

<value>Category:Building and structure images</value>

</wikiparameter>

</wikilink></text>

Figure 1: XML document containing meta-data for image: AnneFrankHouse-
Amsterdam.jpg

Image classification scores: For each image the classification scores for 101
different concepts are derived by UVA [3].

400

Figure 2: Example image: AnneFrankHouseAmsterdam.jpg

CBIR system: An on-line service to get a ranked list of similar images given
a query image (from the collection) is provided by RMIT [2].

Image features: A set of 120D feature vectors, one for each image, is available
that has been used to derive the image classification scores. These feature
vectors can be used to build a custom CBIR-system, without having to
pre-process/access the image collection [4].

Details of these additional sources can be found on the MM track webpages.

3 Task description

The task for the multimedia track is to retrieve relevant information, based
on an information need with a (structured) multimedia character. A structured
document retrieval approach in that case should be able to combine the relevance
of different media types into a single ranking that is presented to the user. The
INEX multimedia track differs from other approaches in multimedia information
retrieval, like TRECVID and IMAGECLEF, in the sense that it focuses on using
the structure of the document to extract, relate and combine the relevance of
different multimedia fragments.

For INEX 2006 Multimedia track we define two main tasks:

MM Fragments: Similar to last year’s approach [5], the objective of the MM-
fragments task is to find relevant XML fragments given an multimedia

401

information need. This task is in essence comparable to the retrieval of
XML elements, as defined in the thorough task of the Ad Hoc track. The
thorough task returns elements ranked in relevance order (where speci-
ficity is rewarded) and overlap is permitted. The main differences with
the INEX Ad Hoc track are that all topics in this track ask for multimedia
fragments (i.e., fragments containing more than text only) and that the
topics may contain visual constraints (see Section 4). The core collection
for this task is the Wikipedia Ad Hoc XML collection.

MM Images: Find relevant images given an information need. Here the type
of the target element is defined (an image), so basically this is image
retrieval, rather than XML element retrieval. Still, the structure of (sup-
porting) documents could be exploited to get to the relevant images. The
core collection for this task is the Wikipedia image collection.

All track resources can be used for both tasks.

4 Topic development

4.1 Topic Creation criteria

Creating a set of topics for a test collection requires a balance between competing
interests. The performance of retrieval systems varies largely for different topics.
This variation is usually greater than the performance variation of different
retrieval methods on the same topic. Thus, to judge whether one retrieval
strategy is (in general) more effective than another, the retrieval performance
must be averaged over a large and diverse set of topics. In addition, the average
performance of the retrieval systems on the topics can be neither too good nor
too bad as little can be learned about retrieval strategies if systems retrieve no,
or only relevant, documents.

When creating topics, a number of factors should be taken into consideration.
Topics should:

• be authored by an expert in (or someone familiar with) the subject areas
covered by the collection,

• reflect real needs of operational systems,

• represent the type of service an operational system might provide,

• be diverse,

• differ in their coverage, e.g. broad or narrow topic queries,

• be assessed by the topic author.

402

4.2 Topic Format

The INEX MM track topics are Content Only + Structure (CO+S) topics, like
in the Ad Hoc track. While in multimedia the term content often refers to
visual content, in INEX it means textual or semantic content of a document
part. The term content-only is used within INEX for topics or queries that use
no structural hints.

The 2006 CO+S topics consist of the following parts, which are explained
in detail below:

<title> in which Content Only (CO) queries are given

<castitle> in which Content And Structure (CAS) queries are given

<description> from which NLP queries are derived

<narrative> in which the definitive definition of relevance and irrelevance are
given

<ontopic keywords> in which terms that are expected in relevant elements
are listed

<offtopic keywords> in which terms that are expected in non-relevant ele-
ments are listed

4.2.1 <narrative>

A clear and precise description of the information need is required in order
to unambiguously determine whether or not a given element fulfills the given
need. In a test collection this description is known as the narrative. It is the
only true and accurate interpretation of a user’s needs. Precise recording of the
narrative is important for scientific repeatability - there must exist, somewhere,
a definitive description of what is and is not relevant to the user. To aid this, the
<narrative> should explain not only what information is being sought, but also
the context and motivation of the information need, i.e., why the information
is being sought and what work-task it might help to solve.

Many different queries could be drawn from the <narrative>, and some are
better than others. For example, some might contain phrases; some might con-
tain ambiguous words; while some might even contain domain specific terms,
structural constraints or visual hints. Regardless of the query, the search en-
gine results are not necessarily relevant. Even though a result might contain
search terms from the query, it might not match the explanation given in the
<narrative>. Equally, some relevant documents might not be found, but they
remain relevant because they are described as so by the <narrative>.

The different CO+S topic parts relate to different scenarios that lead to
different types of queries.

403

4.2.2 <title>

The topic <title> simulates a user who does not know (or does not want to
use) the actual structure of the XML documents in a query and who does not
have (or want to use) example images or other visual constraints. The query
expressed in the topic <title> is therefore a Content Only (CO) query. This
profile is likely to fit most users searching XML digital libraries.

4.2.3 <castitle>

Upon discovering their <title> query returned many irrelevant hits, a user might
decide to add structural hints (to rewrite as a CAS query). This is similar to a
user adding + and - to a web query when too many irrelevant pages are found.
At INEX, these added structural constraints (+S) are specified using the formal
syntax called NEXI (see the INEX website for the specification) and recorded
in the topic <castitle>.

Example Suppose a user wants to find pictures of the Apple II computer.
They enter the CO query:

Apple II figure

but discover that most results are figures of products for the Apple II. They
decide to add structural hints:

//figure[about(., Apple II)]

restricting the results to figure elements only, known to contain the captions
of figures.

In the MM track two special types of about clauses are allowed, both spec-
ifying visual hints or constraints. The first type was already introduced last
year and is used for visual similarity. If a user wants to indicate results should
have images similar to a given example image, this can be indicated in an about
clause with the keyword src:. For example to find images similar to the image
of cityscapes similar to the image with identifier 789744, one could type

\\image[about(.,cityscape) and about(.,src:789744)]

To keep things manageable, only example images from within the MM collection
are allowed.

The second type of visual hints is directly related to the classification that
is provided as an additional source of information. If a user thinks the results
should be of a given concept, this can be indicated with an about clause with
the keyword concept:. For example, to search for cityscapes one could decide to
use the concept building:

\\image[about(.,cityscape) and about(.,concept:building)]

404

Terms following the keyword concept: are obviously restricted to the 101 con-
cepts for which classification results are provided (cf. the INEX MM track
website).

The three different types of about clauses (textual terms, visual examples
and visual concepts) can be used in any combination. It is up to the systems
how to use, combine or ignore this information; the relevance of an result item
does not directly depend on these constraints, but it is decided by manual
assessments based on the <narrative>.

The NEXI parser is extended for this purpose and available from the Mul-
timedia track web-site.

4.2.4 <description>

As an alternative to entering queries into search engines, a user might ask a
librarian to find the information to satisfy their need. Such a user would give a
verbal description to the librarian using a natural language. The NLP track at
INEX is examining the ability of a search engine to satisfy the information need
given this natural language description (recorded in the topic <description>).

Just as there are many CO queries derivable from the <narrative>, there
are many ways to express the need in natural language. However it is expressed,
it is important that it matches the <narrative> while at the same time it is not
the <narrative>.

4.2.5 <ontopic keywords> and <offtopic keywords>

The 2006 CO+S topics contain on-topic and off-topic keywords. These are
keywords that are either likely to be found in relevant or irrelevant elements
retrieved by the user s query. They are recorded in the <ontopic keywords>
and <offtopic keywords> topic parts. These keywords are needed for special
tests (at INEX 2006) into the possibility of doing automatic assessment.

Example On-topic keywords for the user’s information need for pictures of
the Apple II computer might be:

macintosh ; "personal computer" ; photos ; images ; posters

while off-topic keywords might be:

fruit ; "New York" ; Beatles ; granny

4.3 Procedure for Topic Development

Each participating group will have to submit 6 topics by the 7th July 2006. Sub-
mission is done by filling in the Candidate Topic Submission Form on the INEX
web site: http://inex.is.informatik.uni-duisburg.de/2006/ under Tasks/Tracks
– MM – Topics.

405

Each participant is expected to define (at least) two topics for the MMfrag-
ments task, two topics for the MMimages task, and two more topics for a task
of choice. We encourage the participants two define more than six topics, to
increase the reliability of the results, as argued in Section 4.1

The topic creation process is divided into several steps. When developing a
topic, use a print out of the on-line Candidate Topic Form to record all infor-
mation about the topic you are creating.

Step 1: Initial Topic Statement Create a one or two sentence description
of the information you are seeking. This should be a simple description of the
information need without regard to retrieval system capabilities or document
collection peculiarities. This should be recorded in the Initial Topic Statement
field. Record also the context and motivation of the information need, i.e. why
the information is being sought. Add to this a description of the work-task,
that is, with what task it is to help (e.g. writing an essay on a given topic).

Step 2: Exploration Phase In this step the initial topic statement is used
to explore the collection. Obtain an estimate of the number of relevant ele-
ments then evaluate whether this topic can be judged consistently. You may
use any retrieval engine for this task, including your own or the TopX sys-
tem (http://infao5501.ag5.mpi-sb.mpg.de:8080/topx/), provided through the
INEX website. Make sure you select the appropriate collection for each task
(Wikipedia Ad Hoc collection for MMfragments and wikipedia Image XML col-
lection for MMimages).

While exploring the collection make a list of the on-topic and off-topic terms
that might be used to distinguish between relevant and irrelevant results re-
trieved by the search engine.

Alternatively, you may choose to perform a visual exploration. For this
you can use the provided content based information retrieval system to per-
form a similaritly search, or the concept classifications to get an impression of
the top 100 images for a given topic. Since these systems allow access to the
images independent of the wikipedia collection, they are not suitable for the
MMfragments task. For MMimages you can use these visual search option as
an alternative for the textual exploration. We ask you to record the identifiers
of the relevant images you find. The RMIT CBIR system can be accessed at
http://cuscus.cs.rmit.edu.au/, the results for the UvA concept classifica-
tions are available at http://inex.is.informatik.uni-duisburg.de/2006/
downloads/UvAconcepts. At the moment of writing it’s unclear if the CBIR
system will be available on time for topic development. If it’s not, please use
another search system and remember the CBIR service may be valuable when
constructing your runs.

Step 2a: Assess Top 25 Results While you use one or more of the search
engines to explore the collection, assess the relevance of retrieved element use
the following working definition: mark it relevant if it would be useful if you

406

were writing a report on the subject of the topic, or if it contributes toward
satisfying your information need. Each result should be judged on it own merits.
That is, information is still relevant even if it is the thirtieth time you have
seen the same information. It is important that your judgment of relevance is
consistent throughout this task. Using the Candidate Topic Submission Form
record the number of found relevant elements and the path representing each
relevant element. We ask you to look at the top 25 results for at least one search
engine. Then if you found fewer than 2 relevant documents in total, or more
than 20 using a single search engine, abandon the topic and use a new one.
Otherwise, perform a feedback search (see below).

Step 2b: Feedback Search After assessing the top 25 elements, you should
have an idea of which terms (if any) could be added to the query to make the
query as expressive as possible for the kind of elements you wish to retrieve.
You should also have an idea of which terms could be used to disambiguate
relevant from irrelevant results and if visual clues in the query.

Use the expanded query and a single search engine of choice (preferably
the one that produced the most relevant answers), to retrieve a new list of
candidates. Judge the top 100 results (some are already judged), and record
the number of relevant results in Candidate Topic Form. Record the expanded
query in the title field of the Candidate Topic Submission Form. Now record
the on-topic and off-topic terms on the Candidate Topic Submission Form.

Step 3: Write the <narrative> Having judged the top 100 results you
should have a clear idea of what makes a component relevant or not. It is
important to record this in minute detail as the <narrative> of the topic. The
<narrative> is the definitive instruction used to determine relevance during
the assessment phase (after runs have been submitted). Record not only what
information is being sought, but also what makes it relevant or irrelevant. Also
record the context and motivation of the information need. Include the work-
task, which is: the form the information will take after having been found (e.g.
written report). Make sure your description is exhaustive as there will be several
months between topic development and topic assessment.

Step 4 CO+S: Optionally write the <castitle> Optionally re-write the
title by adding structural constraints and target elements, visual examples
and/or visual concepts. Record this as the <castitle> on the Candidate Topic
Submission Form. Also record why you think the structural hints might help
in the <narrative>. Please note that we aim at having castitles in most topics.
Also note that since the MMimages task is a document retrieval task, here the
target element should be an article element, thus all NEXI queries in this task
should be of the form:

\\article[X]

where X is a predicate using one or more about functions.

407

Step 5: Write the <description> Write the <description>, the natural
language interpretation of the query. Ensure the information need as expressed
in the <title>, and <castitle> is also expressed in the <description>. Make
sure the <description> does not express any additional information needs.

Step 6: Add ontopic and offtopic keywords Based on the documents you
have seen, add a set of ontopic keywords (terms that are likely to be found in
relevant documents and elements), and offtopic keywords (terms that are likely
to be found in irrelevant documents and elements). The more terms the better.

Step 7: Refining Topic Statements Finalize the topic <title>, <castitle>,
<description>, and <narrative>. It is important that these parts all express
the same information need; it should be possible to use each part of a topic in a
stand-alone fashion (e.g. title for retrieval, description for NLP, etc.). In case of
dispute, the <narrative> is the definitive definition of the information need - all
assessments are made relative to the <narrative> and the <narrative> alone.

Step 8: Topic Submission Once you are finished, fill out and submit the on-
line Candidate Topic Submission Form on the INEX website http://inex.is.informatik.uni-
duisburg.de/2006/ under Tasks/Tracks Ad hoc Topics. After submitting a
topic you will be asked to fill out an online questionnaire (this should take no
longer than 5-10 minutes). It is important that this is done as part of the topic
submission as the questions relate to the individual topic just submitted and
the submission process. This is part of an effort to collect more context for the
INEX topics as discussed at the Dagstuhl workshop.

Please make sure you submit all candidate topics no later than the 7th July
2006.

4.4 Topic Selection

From the received candidate topics, the INEX organizers will decide which topics
to include in the final set. This is done to ensure inclusion of a broad set of
topics. The data obtained from the collection exploration phase is used as part
of the topic selection process. The final set of topics will be distributed for use
in retrieval and evaluation.

5 Runs

Once the topics are distributed, participants can start working on their runs.
Each group can submit up to 6 runs per task. At least one of the runs should
be a title only run. For the other runs, the participants are free to use any
combination of the fields defined for a topic.

For each run we would like to know which sources are used (Ad Hoc Collec-
tion, ImgXML collection, visual features, classification data, CBIR system). We
would encourage groups to do a baseline run that uses online the <title> part of

408

the query and no sources of information except for the target collection (image
XML collection for MMimages task, Ad Hoc Collection for MMfragments task).

Runs for the MMfragments task can be interpreted as what is known in
the INEX Ad Hoc track as Thorough, this means a result list may contain
overlapping elements. The MMimages task is a document retrieval task, the
only results allowed there are full documents (ie., articles) from the image XML
collection. This mean the path of each of the results for this task should be
/article[1].

5.1 Submission Format

The submission format for the MM tracks is highly similar to the format for the
Ad Hoc tracks. The only changes are in the names of the task and the topic-
fields. The submission format for both MM tasks is defined in the following
DTD:

<!ELEMENT inex-submission (topic-fields, description, collections, topic+)>

<!ATTLIST inex-submission

participant-id CDATA #REQUIRED

run-id CDATA #REQUIRED

task (MMfragments|MMimages) #REQUIRED

query (automatic|manual) #REQUIRED

submission-type CDATA #REQUIRED

>

<!ELEMENT topic-fields EMPTY>

<!ATTLIST topic-fields

title (yes|no) #REQUIRED

castitle (yes|no) #REQUIRED

description (yes|no) #REQUIRED

narrative (yes|no) #REQUIRED

>

<!ELEMENT resources EMPTY>

<!ATTLIST resources

wikipedia (yes|no) #REQUIRED

wikipedia_IMG (yes|no) #REQUIRED

UvAfeatures (yes|no) #REQUIRED

UvAconcepts (yes|no) #REQUIRED

RMIT_GIFT (yes|no) #REQUIRED

>

<!ELEMENT description (#PCDATA)>

<!ELEMENT topic (result*)>

<!ATTLIST topic topic-id CDATA #REQUIRED >

<!ELEMENT collections (collection+)>

<!ELEMENT collection (#PCDATA)>

<!ELEMENT result (in?,file, path, rank?, rsv?)>

<!ELEMENT in (#PCDATA)>

<!ELEMENT file (#PCDATA)>

<!ELEMENT path (#PCDATA)>

<!ELEMENT rank (#PCDATA)>

<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute
(available at the INEX web-site http://inex.is.informatik.uni-duisburg.de/2006/ShowParticipants.html),
a run ID (which must be unique for the submissions sent from one organization
– also please use meaningful names as much as possible), the identification of

409

the task (MMfragments or MMimages), and the identification of whether the
query was constructed automatically or manually from the topic. Furthermore,
the used topic fields must be indicated in the <topic-fields> tag as well as the
used resources. Furthermore each submitted run must contain a description
of the retrieval approach applied to generate the search results. A submis-
sion contains a number of topics, each identified by its topic ID (as provided
with the topics). For compatibility with the heterogeneous collection track, the
<collections> tag is mandatory. There should be with <collections> at least
one <collection> tag, which should be set to ‘wikipedia’ for the MMfragments
task and to ‘wikipedia IMG’ for the MMimages task. The <in> tag is optional
for the MM track (<in> states from which collection each result comes from).
For each task a maximum of 1500 result elements may be included per topic.
A result element is described by a file name and an element path, and it may
include rank and/or retrieval status value (rsv) information. Here is a sample
submission file for the MMfragments task TASK:

<inex-submission participant-id="12" run-id="VSM_Aggr_06"

task="MMfragments" query="automatic">

<topic-fields title="no" castitle="yes" description="no" narrative="no"/>

<resources wikipedia="yes" wikipedia_IMG="yes" UvAfeatures="no" UvAconcepts="no" RMIT_GIFT="yes"/>

<description>Using VSM to compute RSV at leaf level combined with

aggregation at retrieval time, assuming independence and using

augmentation weight=0.6.</description>

<collections>

<collection>wikipedia</collection>

</collections>

<topic topic-id="01">

<result>

<file>9996</file>

<path>/article[1]</path>

<rsv>0.67</rsv>

</result>

<result>

<file>9996</file>

<path>/article[1]/name[1]</path>

<rsv>0.1</rsv>

</result>

[...]

</topic>

<topic topic-id="02">

[...]

</topic>

[...]

</inex-submission>

Rank and RSV The rank and rsv elements are provided for submissions
based on a retrieval approach producing ranked output. The ranking of the
result elements can be described in terms of:

• Rank values, which are consecutive natural numbers, starting with 1. Note
that there can be more than one element per rank.

410

• Retrieval status values (RSVs), which are positive real numbers. Note
that there may be several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a sub-
mission. If both rank and rsv are given, the rank value is used for evaluation.
If neither is given, the document order is used.

File and path Since XML retrieval approaches may return arbitrary XML
nodes from the documents of the INEX collection, we need a way to identify
these nodes without ambiguity. Within INEX submissions, elements are iden-
tified by means of a file name and an element (node) path specification, which
must be given in XPath syntax. The file names in the Wikipedia collections
uniquely define an article, so there is no need for including the directory in
which the file resides (in contrast with the earlier IEEE collection). The exten-
sion .xml must be left out. Example:

9996

Element paths are given in XPath syntax. To be more precise, only fully
specified paths are allowed, as described by the following grammar:

Path ::= ’/’ ElementNode Path | ’/’ ElementNode | ’/’ AttributeNode

ElementNode ::= ElementName Index

AttributeNode ::= ’@’ AttributeName

Index ::= ’[’ integer ’]’

Example:

/article[1]/body[1]/section[2]/p[1]

This path identifies the element which can be found if we start at the document
root, select the first “article” element, then within that, select the first “body”
element, within which we select the second “section” element, and finally within
that element we select the first “p” element. Important: XPath counts elements
starting with 1 and takes into account the element type, e.g. if a section had
a title and two paragraphs then their paths would be given as: ../title[1],
../p[1] and ../p[2].

A result element may then be identified unambiguously using the combina-
tion of its file name and element path. Example:

<result>

<in>wikipedia</in>

<file>9996</file>

<path>/article[1]/body[1]/section[2]/p[1]</path>

</result>

Once again, MMimages is a document retrieval task, the only submitted
<path> allowed for this task is /article[1]. In practise we will ignore the
submitted <path> and only use the <file> field of the result (duplicate files in
a single run are not allowed).

411

5.2 Result Submission Procedure

To submit a run, please use the following link: http://inex.is.informatik. uni-
duisburg.de/2006/ Then go to Tasks/Tracks, Multimedia, Submissions. The
online submission tool will be available soon.

6 Assessments

To be decided

References

[1] Birger Larson and Andrew Trotman. Inex 2006 guidelines for topic devel-
opment. Unpublished document distributed to INEX 2006 participants.

[2] RMIT University School of Computer Science and Information Technology.
Wikipedia cbir system for the multimedia track. http://www.cs.rmit.edu.
au/.

[3] C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, and A.W.M.
Smeulders. The challenge problem for automated detection of 101 seman-
tic concepts in multimedia. In ACM Multimedia Conference, 2006. under
review.

[4] Jan C. van Gemert, Jan-Mark Geusebroek, Cor J. Veenman, Cees G.M.
Snoek, and Arnold W.M. Smeulders. Robust scene categorization by learn-
ing image statistics in context. In CVPR Workshop on Semantic Learning
Applications in Multimedia, New York, USA, June 2006.

[5] R. van Zwol, G. Kazai, and M. Lalmas. Inex 2005 multimedia track. In Ad-
vances in XML Information Retrieval, Lecture Notes in Computer Science.
Springer, 2006.

[6] Roelof van Zwol, Mounia Lalmas, and Gabriella Kazai. Inex 2005 multimedia
track – working document. Unpublished document distributed to INEX 2005
MM participants.

412

Entity Ranking – Guidelines
DRAFT v1

Arjen P. de Vries
CWI, Amsterdam, The Netherlands

arjen@acm.org

Nick Craswell
Microsoft Research, Cambridge, UK

nickcr@microsoft.com

May 26, 2006

1 Introduction

Search engines are ever more interested in returning entities instead of ‘just’ web pages. INEX
has started a pilot track called Entity Ranking to provide a forum where researchers may
compare and evaluate techniques for engines that return lists of entities. The goal (for this
year at least) is not to evaluate how well systems identify instances of entities; the set of
entities is assumed known.

2 Data

The track uses the wikipedia data, where we exploit the category metadata on pages to con-
struct the entity sets. For example, consider categories ‘Dutch politicians’ or ‘Art museums
and galleries’. The entities in such a set are assumed to correspond to those wikipedia pages
that are labeled with this category.

Obviously, this is not a perfect solution: many wikipedia pages will not have been cate-
gorised, and, pages that do not correspond to the entity set may have been assigned the
category because of a different relationship. We expect however that in spite of these issues,
the data set provides a sufficiently useful collection as a starting point for the purpose of
a pilot track. The challenge is to make use of the rich information from text, structure and
links to perform this task.

3 Tasks

3.1 Entity Ranking

The motivation for Entity Ranking is to return entities that satisfy a topic described in nat-
ural language text. With ‘Art museums and galleries’ as the entity set and a topic text ‘Im-

413

mailto:arjen@acm.org
mailto:nickcr@microsoft.com

pressionist art in the Netherlands’, we expect answers like the ‘Van Gogh museum’ and the
‘Kröller-Müller museum’.

3.2 List Completion

If we provide the system with the topic text and a number of examples, the task of list com-
pletion refers to the problem of completing the partial list of answers. As an example, when
ranking ‘Countries’ with topic text ‘European countries where I can pay with Euros’, and
examples like ‘France’, ‘Germany’, ‘Spain’, then ‘The Netherlands’ would be a correct com-
pletion, but ‘Great Brittain’ would not.

3.3 Associative Ranking

The final task is to generate or complete a second list, that differs from a given list of entities
in some attribute. For example, given Dutch impressionist art musea, we could request the
system to provide a list of modern art musea in The Netherlands.

4 Topics

Participants are asked to create a small number (say 5) of (partial) entity lists with corre-
sponding topic text. Candidate entities correspond to pages that are assigned to (combina-
tions of) categoriesed in the Wikipedia corpus.

5 Evaluation

We anticipate a form of participant judging based on voting.

Each participant gets assigned a subset of the topics, and they vote on the correctness of
the pooled answers. The answers that get a sufficient number of votes will be assumed the
correct ones.

We make the assumption that an entity corresponds to a wikipedia page, so the answer
pool correspond to a list of links into the collection. This list will be ordered based on their
frequency in the pool. Each participant will be asked to go as deep into the list as they can
in a fixed amount of time.

The above procedure is designed for optimal assessment efficiency. We assume that the
nature of the task is such that it is feasible to assess answer correctness quickly. We will
analyse the data obtained for their accuracy.

414

View publication statsView publication stats

https://www.researchgate.net/publication/221232923

	INEX 2006 Workshop Pre-Proceedings
	FRONT MATTER
	TABLE OF CONTENTS
	ORGANIZERS
	PREFACE
	ACKNOWLEDGEMENTS
	SCHLOSS DAGSTUHL

	METHODOLOGY
	Choice of Parameter Values for the INEX Evaluation Metrics: Sensitivity Analysis
	XML Retrieval Evaluation Revisited: A Comparison of Metrics

	AD HOC
	Efficient, Effective and Flexible XML Retrieval Using Summaries
	Using Topic-shifts in XML Retrieval at INEX 2006
	Structured Content-Only Information Retrieval Using Term Proximity and Propagation of Title Terms
	Influence Diagrams and Structured Retrieval: Garnata implementing the SID and CID models at INEX’06
	Information theoretic retrieval with structured queries and documents
	Dynamic Element Retrieval in the Wikipedia Collection
	The University of Kaiserslautern at INEX 2006
	Indexing ”Reading Paths” for a Structured Information Retrieval at INEX 2006
	GPX at INEX 2006
	Robert Gordon University at INEX 2006: Adhoc Track
	Tuning and evolving retrieval engine by training on previous INEX testbeds: preliminary work
	The University of Amsterdam at INEX 2006
	Using Language Models and the HITS Algorithm for XML Retrieval
	CSIRO’s participation in INEX 2006
	EXTIRP: baseline retrieval from Wikipedia
	CISR at INEX 2006
	A scalable XML component ranking algorithm
	Indian Statistical Institute at INEX 2006 Adhoc track: A Preliminary VSM Approach
	SIRIUS XML IR System at INEX 2006: Approximate Matching of Structure and Textual Content
	A Method of Preferential Unification of Plural Retrieved Elements for XML Retrieval Task
	TopX – AdHoc and Feedback Tasks
	Supervised and Semi-supervised Machine Learning Ranking
	PF/Tijah at INEX 2006
	XSee: Structure Xposed

	NATURAL LANGUAGE
	Using Rich Document Representation in XML Information Retrieval
	NLPX at INEX 2006
	Shallow parsing of INEX Queries

	HETEROGENEOUS
	The Heterogeneous Collection Track at INEX 2006
	Probabilistic Retrieval approaches for Thorough and Heterogeneous XML Retrieval

	MULTIMEDIA
	Social Media Retrieval using Image Features and Structured Text
	XFIRM at INEX 2006 - Preliminary work. Ad-hoc, Relevance Feedback and MultiMedia tracks
	Information Fusion in XML Document Searches by Combining Text and Image Retrieval Techniques
	Benchmarking Multimedia Search in Structured Collections

	INTERACTIVE
	Kyungpook National University at INEX 2006: Interactive Track
	The Interactive Track at INEX 2006
	Context revisited - element retrieval behaviour and genre dependency
	Evaluating Tasks by Type and Form

	USE CASE
	A Taxonomy for XML Retrieval Use Cases
	Inter-assessor agreement at INEX 06
	XML-IR Users and Use Cases
	What XML-IR Users Want

	DOCUMENT MINING
	On the unsupervised classification of text-centric XML document collections
	XML Document Mining using Contextual Self-Organizing Maps for Structures
	FAT-CAT: Frequent Attributes Tree based Classification
	XML Structure Mapping Application to the PASCAL / INEX 2006 Document Mining Track
	Clustering XML Documents by Structural Similarity with PCXSS
	Classifying XML Documents Based on Structure/Content Similarity
	XML Document Mining using Graph Neural Network

	APPENDIX
	The Wikipedia XML Corpus
	INEX 2006 Guidelines for Topic Development
	INEX 2006 Retrieval Task and Result Submission Specification
	INEX 2006 Relevance Assessment Guide
	INEX'06 Het Track Retrieval Task and Result Submission Specification
	INEX 2006 Multimedia Track Guidelines
	Entity Ranking – Guidelines DRAFT v1

