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1.   Introduction 

Data serve as foundation and evidence for scientific research and progress 

(Parsons et al., 2010). For instances, test collections developed at TREC (TREC, 

n.d.) have promoted research and development in information retrieval and 

access; The ArrayExpress Archive, a repository archiving functional genomics 

data, has become a major resource for biomedical research community to reuse 

data for high-throughput functional genomics experiments. Sharing and reuse of 

scientific data have advanced research and development, boosted knowledge 

exchange, motivated innovative research design, and accelerated problems 

solving (Aalbersberg et al., 2013; Chao, 2011; Mooney & Newton, 2012; 

Piwowar & Chapman, 2008a). Understanding the sharing and reuse of scientific 

data or datasets is therefore important for data producers, users, and funding 

agencies.  Researchers or funders who make their datasets available would be 

interested in the citation and impact of their data; Users, especially novice 

researchers could benefit from data use information to choose and apply 

appropriate data or datasets in their research. 

Even though the importance of data use and reuse has been realized by 

researchers in different disciplines, the research on data use related issues is 

unbalanced. Some disciplines, such as Biology, Medicine, and Earth Science, 

have established several influential data repositories (Robinson-Garciav et al., 

2015; Torres-Salinas et al., 2014). Data-related research such as data use 

tracking (Konkiel, 2013; Mayernik, 2013), analysis of data sharing motivations 

and impacts (Piwowar, 2011; Piwowar & Chapman, 2008a; Piwowar & Vision, 

2013), and datasets evaluation has also been conducted. Researchers in these 

areas have attempted to incorporate existing data or datasets into their own 

projects to discover new knowledge. For other disciplines, such as Computer 

Science and Information Science, there is yet no much investigation on 

identifying and evaluating data ownership and data reuse.  

The purposes of our study were to effectively and efficiently identify 

articles containing data usage statements, and to explore the application of such 

identification. Data usage statements (DUS) usually specify how particular data 

or datasets are obtained, processed, or utilized by authors (Zhang, et al, 2016). 

These statements allow us to understand data usage behavior reflected in 

scientific articles. Effective extraction of DUS is therefore crucial, especially in 

the context of big data, as more and more research articles are available and 

needed to be analyzed. A few studies have focused on extracting DUS using 

manual, semi-automatic, or automatic approaches. However, there is no much 
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study on identifying articles containing DUS and applying that to analyze data 

use and reuse in specific fields.  

The rest of the paper is organized as follows: Section 2 reviews existing 

literature on data usage identification and data usage analysis; Section 3 

elaborates the design, procedures, data collections, and experimental setting; 

Section 4 presents evaluation results; Section 5 discribes an application of using 

extracted DUS to understand data use behavior in the field of Pattern 

Recognition; Section 6 discusses the significance and limitations. The paper 

concludes with a summary and thoughts for future research. 

2.   Related Studies 

This study conducted automatic identification of data use patterns from research 

articles, and used the identification results to analyze data use and reuse 

characteristics of a particular field. Thus, we review the related studies in these 

two areas. 

2.1.   Data Usage Identification 

Existing methods on identifying data usage or sharing can be divided into three 

major categories: (1) human-intensive methods; (2) semi-automatic and machine 

learning methods; and (3) unsupervised automatic methods. 

        With human-intensive methods, researchers construct a collection of 

publications following a certain strategy and then identify whether these 

publications have used or shared data manually. Piwowar and colleagues (2007) 

manually examined citation history of 85 cancer microarray clinical trial 

publications. Some studies retrieved literature from search engines as a 

candidate collection using Digital Object Identifier (DOI), database accession 

number, names of data repositories, or other references as queries.  Piwowar and 

colleagues (2011) collected research papers in academic search engines using 

DOI as search queries. They manually examined whether some specific datasets 

were used in the retrieved results. Belter (2014) selected three well-known 

oceanographic datasets to investigate their use and reuse by searching for their 

names in Web of Science, publisher’s full-text websites and Google Scholar. 

Some studies were carried out to identify articles in which the authors share 

their data by providing a link to certain data repositories (Piwowar, 2011; 

Piwowar & Vision, 2013). 

        As for semi-automatic methods and machine learning methods, external 

resources were applied to facilitate the identification of data usage or sharing in 

some disciplines such as Biomedical science and Geoscience, as these 
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disciplines have established common practice on data sharing and reuse. 

Piwowar and Chapman (2008a) assumed that an article with data sharing should 

mention at least the name of a certain data repository. They therefore developed 

regular expressions containing the names of known data repositories. Different 

machine learning algorithms were then applied to classify articles using the 

matched names as features in combination with other features based on bag-of-

words. In their following studies (Piwowar, 2011; Piwowar & Vision, 2013), 

they explored the motivation of data-sharing by judging whether articles about 

gene microarrays in PubMed shared their datasets. PubMed ID of an article was 

used as the query when searching the data repositories. Névéol and others 

(2011) trained a Naïve Bayes classifier and a Support Vector Machine classifier 

with 586 positive statements and 578 negative statements to extract data 

deposition statements. The features included the words, the sentence location, 

the part-of-speech tags, and the sentence composition. Articles containing data 

deposition behavior were correctly identified with 81% F-measure. 

        Besides, some studies focused on automatically obtaining data usage in 

articles. Kafkas and others (2013) studied how database entries were cited in 

research articles. They conducted the first accession number citation analysis 

based on the full-text open access articles available from Europe PMC. The 

BioLit portal provides clickable links from full-text articles to PDB and Gene 

Ontology based on accession numbers identified in the text (Fink et al., 2008). 

Haeussler et al., (2011) mined DNA sequences from full text and used them to 

create links to genomic sequences in Ensembl (Hubbard et al., 2009). 

        In addition to the methods mentioned above, an automatic and 

unsupervised strategy called bootstrapping can proceed without external input 

(Bootstrapping, 2017) , which is a self-starting process. Boland and others 

(2012) used bootstrapping to identify references to datasets in publications, with 

the purpose of linking published literatures in social sciences to their 

corresponding data produced through surveys or interviews. Zhang and 

colleagues (2016) experimented with a bootstrapping approach to automatically 

extract data usage statements from academic texts. Our study is a further 

development from that study (Zhang,  2016), with revisions on the specific steps 

in the bootstrapping method and DUS discrimination, and extension to analyze 

data use and reuse characteristics in a scientific field. 

2.2.   Data Use and Reuse Analysis 

Open access of scientific data has enabled research on identifying data sharing 

behavior and its impact on citation and scientific progress (Piwowar et al., 2007; 

Piwowar and Chapman, 2008b; Piwowar, 2011; Tenopir et al., 2011; Poline et 

al., 2012; Vines et al., 2014). Most studies concentrated on data reuse behavior, 
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emphasizing the assessment of the value of data reuse (Chao, 2011; Palmer et 

al., 2011; Meijer et al., 2013; Belter, 2014), the evaluation methodology and 

measures, and the life cycle and scope of data reuse (Chao, 2011; Piwowar and 

Vision, 2013). 

       Faniel and Jacobsen (2010) discovered some key indicators for evaluating 

reusable data, including data relevance, intelligibility and credibility through 

interviewing researchers in the field of earthquake engineering. Palmer and 

others (2011) explored user behavior of data reuse and constructed a data 

analytic potential model, which consists of potential user communities, 

preservation convenience, and fitness to purpose. They conducted case studies in 

Geobiology, Volcanology and Soil Ecology fields to validate the proposed 

model. 

        Some researchers have analyzed existing data citation patterns in texts to 

find out better data citation identification approach. Piwowar and others (2011) 

selected 1,000 datasets in Biology and earth environment and analyzed the 

occurrences of their names in articles. They found that data citations were varied 

without unified, standard formats. Belter (2014) studied the usage of three well-

known oceanographic data collections in different tracking methods, finding that 

citation statistical analysis yielded very different results. Kafkas and others 

(2013) investigated the citation of some important data repositories in 

bioscience, finding that citation counts based on mining their accession numbers 

is as twice as those provided by publishers through structured annotation. In 

their subsequent research, they extended the scope of their text mining from full 

text to other supplementary data (Kafkas et al., 2015). Robinson-Garcia and 

others (2015) analyzed data citation practices based on Data Citation Index from 

Thomson Reuters and found that there were no shared data citation practices 

across research fields. While datasets generated in Science and Engineering and 

Technology were the most cited, those generated in Social Sciences and Arts 

and Humanities were far less being cited or reused.  

        Differently, this study analyzed the data use and reuse in the field of Pattern 

Recognition, a sub-discipline in Computer Science. Applying patterns developed 

from Computer Science literature, we were able to discover the status and the 

tendency of data use and/or reuse in Pattern Recognition in combination with 

traditional bibliometric method. 

3.   Methodology 

This paper proposed and implemented an unsupervised strategy based on 

bootstrapping to identify data usage at the article level. It determined whether a 
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given article used data, whether built in-house or borrowed from others, to assist 

research. This section describes the research design, the bootstrapping strategy, 

experimental design, and evaluation methodology. 

3.1.   Research Design 

Figure 1 illustrates the processes of our study, including pattern list acquisition, 

data usage statements extraction, and article identification/classification based 

on data usage statements identification. Firstly, some initial seed words as the 

input of the training process were expanded by bootstrapping to obtain a pattern 

list through an iterative process. Secondly, the pattern list was employed to 

extract DUS from an article collection compiled from different sources. Finally, 

research articles in the collection were classified into one of the two categories: 

article with data usage vs. article without data usage. 

 

Fig. 1. Research Design 

3.2.   The Bootstrapping Strategy 

We employed a bootstrapping strategy to obtain a pattern list that was used later 

for DUS extraction. As illustrated in Figure 1 inside the dotted rectangle, the 

bootstrapping process starts with adding initial seed words as clue words into the 

data_clue list, called ClueList below (see Section 3.2.1 for seed words 
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selection). Then perform the following steps (Let’s define the current iteration as 

i, and the maximum of iteration is MAX): 

1) Identify and obtain all patterns that match the two pattern types 

specified in Section 3.2.2 from the relations extracted from a training 

collection. See section 3.3 for obtaining the relations. 

2) Calculate the scores of each pattern P according to Formula 1, and add 

patterns with top (20+i) scores into the Data_Pattern list. 

 

Score(P) =
𝐹∗log2 𝐹

𝑁
                                               (1) 

 

        Eq. 1 was first used in (Riloff, 1996) for extraction pattern learning. N 

refers to the total number of clue words in current ClueList. F refers to the 

number of clue words contained in this pattern. Each pattern needs to contain at 

least one clue word, or F>=1. A pattern will be ranked higher if it contains more 

clue words. 

3) Use patterns in the PatternList to extract candidate data_clue words 

(see pattern examples in Table 1). 

4) Calculate score for each candidate clue word with Eq. 2. Add top 

ranked five new words into the ClueList. 

 

Score(W) =
∑ log2(𝐹𝑗+1) 𝑃

𝑗=1

𝑃
                                    (2) 

 

        Eq. 2 was first used in (Thelen & Riloff, 2002) for semantic lexicons 

leaning. P refers to number of unique patterns that can extract this candidate 

word; Fj refers to number of clue words extracted by each pattern. A clue word 

will be ranked higher if it appears in more patterns. 

5) If i < MAX, perform Step 2) to 4). Otherwise, stop the iteration. 

The outcome of the bootstrapping process is a list of text patterns. 

3.2.1.   Seed words selection 

The seed words that started the bootstrapping training process were manually 

selected by an inspection of sample papers in our document collection. Three 

strategies were tested: 

1) Selecting the names of a few well-known datasets as seed words. This 

strategy was abandoned due to poor performance in evaluation 

experiments; 

2) Selecting both names of a few well-known datasets and a few general-

purpose words relating to data, such as “dataset” as seed words, which 

is called COM-SEED for short; 
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3) Selecting a few general-purpose words related to data, such as “dataset” 

as seed words, which is called GEN-SEED for short. 

Table 3 lists the initial seed words for the training dataset used in this study. 

3.2.2.   Pattern Construction 

Pattern in this study refers to a segment of texts presenting a structural feature of 

a sentence. Patterns can be used to search in texts so matched sentences can be 

identified and extracted. Linguistically, the more general a pattern, the more 

sentences can it matches. Considering the degrees of both generalizability and 

representativeness of patterns, we chose to construct two types of patterns that 

contain the core of a sentence (the predicate) and the possible positions of the 

clue words: 

1) subject + predicate. In this type of pattern, one or more seed words 

should appear in the object of the sentence; 

2) predicate + object. In this type of pattern, one or more seed words 

should appear in the subject of the sentence. 

Table 1 gives two example patterns and the sentences matching them. The 

clue words are also highlighted in the sample sentences. 

Table 1. Examples of Patterns  

Pattern Matched Sentences with Data Clue Words Highlighted 

consist of # 

samples 

The breast cancer set consists of 569 samples with 357 benign 

and 212 malignant 

have # samples 

Data set 1 is referred to as Char250, which has 250 samples per 

category for lower and upper cases, respectively; data set 2 is 

referred to as Char1000, which has 1000 samples per category 

for lower and upper cases, respectively. (Note: this pattern 

occurs twice) 

we perform 

experiment on 

To assess the ability of the proposed clustering algorithm to 

classify the shape classes, we perform experiments on an 

increasing number of shapes in the two Aslan and Tari data 

sets. 

We perform our experiments on a real-estate system with real-

life house dataset used in. 

3.3.   The Data Collections for Training and Evaluation 

Table 2 lists the data collections we constructed for this study. Among them, the 

first five collections are in Computer Science and derived from the 

ScienceDirect database. The last two collections are in Biomedical Science and 

derived from a subset of the PMC (PubMed Central) full-text database provided 
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by TREC Clinical Decision Support Track 2016 (Roberts, K, 2016), denoted by 

PMC OPEN ACCESS. For each data set, an open-course program called 

ReVerb (Fader, Soderland, & Etzioni, 2011) was employed to extract relations 

in the triple format of (argument1, relation phrase, argument 2) from each full-

text article. Table 2 specifies the size of the relations extracted from each data 

set. These relations were the input to the bootstrapping process as well as the 

evaluation experiments. 

Table 2. Data Collections Constructed for Training and Testing 

Use & Name Size Sources 

ORIGIN:  

CSTriples_W

hole 

39,866,097 

relations from 

134,610 full-text 

articles 

134,610 full-text articles published between 

2000 and 2014 from 115 journals in the 

field of Computer Science 

Train:  

CSTriples_Tr

ain 

6,340,339 

relations from 

sections 

Sections whose headings contain "result", 

"experiment" or "evaluation".  Selected 

from 128,317 articles published between 

2000 and 2013 of the CSTriples_Whole 

collection 

Evaluation:  

CSTriples_Te

st 

 

Articles published in 2014 of the 

CSTriples_Whole collection 

Within-field 

Evaluation:  

DATAUSE_I

NNER 

98 full-text 

articles (84 

articles reusing 

dataset and 14 

articles building 

their own dataset) 

Manually annotated articles from 

CSTriples_Test when they belong to 9 

targeted journals (refers to the classification 

of Artificial Intelligence and Computer 

Vision and Pattern Recognition in the 

ScienceDirect database) 

Within-field 

Evaluation:  

NONUSE_IN

NER 

82 full-text 

articles without 

data usage 

the same as the data source above  
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Cross-field 

Evaluation:  

DATAUSE_

OUTER 

200 full-text 

articles (randomly 

select 100 articles 

from REUSE 

collection and 100 

articles from 

SELFUSE 

collection) 

REUSE collection is derived from 3355 

available articles manually annotate by 

(Piwowar and Vision, 2013) as reusing the 

data in GEO repository; SELFUSE 

collection contains 823 related submission 

papers crawled from GEO repository 

Cross-field 

Evaluation:  

NONUSE_O

UTER 

103 full-text 

articles 

articles citing the submission paper. The 

citation relations are acquired through 

querying the PMID of the Submission paper 

in the Web of Science core collection. The 

filter criteria require the top 10 citation 

frequency, and exclude articles with the 

Accession number detected, and articles 

with GEO Accession number (such as 

“GDSnnnn” and “GSEnnnn”) or “data” in 

the text. 

3.4.   The Experiments 

Based on two different seed words selection strategies (COM-SEED and GEN-

SEED), we conducted bootstrapping over the CSTriples-Train collection with 

300 iterations following the procedures presented in Section 3.2. Table 3 

presents the initial seed words used in experiments. 

Table 3. Initial Seed Words 

Seed selection strategy Initial seed words 

COM-SEED 

trec # 
iris 

ar face 
kdd cup 

uci machine learning repository 
data/data set/ dataset 

database 
corpus 

GEN-SEED 
data/dataset/data set 

corpus 
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        With the final pattern list obtained from bootstrapping, we extracted DUS 

from each paper in the test data collection: subsets of CSTriples_Test and PMC 

OPEN ACCESS. A sentence in the form of a complete subject-verb-object 

structure was identified as a data usage statement if it matched at least one 

pattern in the Data_pattern list. 

        Finally, each research article in the last four evaluation collections as 

presented in Table 2 was automatically classified into one of the two categories: 

articles with data usage vs. articles without data usage, depending on how many 

DUS it contained. The four evaluation collections were manually annotated 

beforehand and served as gold standard for this study. 

3.5.   Evaluation Measures 

We use pattern extensibility to measure the effectiveness of the strategy 

proposed in this paper for identifying data usage at the article level. In other 

words, pattern extensibility measures the performance of a computational 

approach using patterns obtained from a training set to identify data usage from 

articles in the same or a different subject domain. Specifically, we use within-

field extensibility to indicate pattern extensibility in the same subject domain, 

and cross-field extensibility to indicate pattern extensibility from articles in a 

field with a different subject domain. 

        The evaluation measures for pattern extensibility include Precision, Recall 

and F measure, which have been used in information retrieval system 

evaluations and other evaluation tasks. To calculate these measures, we 

extracted DUS from evaluation datasets with pattern list obtained from training 

process and constructed respective result datasets. Then, we compared the result 

datasets with their human annotations. Equations (3), (4), and (5) were used to 

calculate the scores for precision, recall, and the F measure. 

Precision =
𝑀𝑛

𝑅𝑛
                                          (3) 

      Recall =
𝑀𝑛

𝑆𝑛
                                           (4) 

     F − 1 =
2×Precision×Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                    (5) 

        Here Rn denotes the number of all articles in the results collection; Mn 

denotes the number of articles in both results collection and its respective 

evaluation collection; and Sn denotes the number of articles in the evaluation 

collection.  
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        Among the data collections listed in Table 2, DATAUSE_INNER and 

NONUSE_INNER were used for within-field extensibility evaluation, while 

DATAUSE_OUTER and NONUSE_ OUTER were for cross-field extensibility. 

To avoid bias caused by the imbalance between the two types of articles, 

experiments on the DATAUSE_OUTER dataset was repeated for 5 times when 

evaluating the cross-field pattern extensibility, and the average scores were 

taken as the final evaluation results. 

4.   Evaluation Results 

This section reports bootstrapping and evaluation results on pattern extensibility. 

4.1.   Patterns Extracted Through Bootstrapping 

We conducted the iterative bootstrapping processes and extracted clue words 

and patterns out of CSTriples_Train. Table 4 summarizes the total number of 

clue words and patterns extracted under different seed word strategies after 300 

iterations. In total, we extracted 2,237 patterns using COM-SEED strategy and 

1,577 patterns using GEN-SEED strategy. 

Table 4. Results of Bootstrapping on CSTriples_Train 

Seed word strategy Pattern Strategy Number of 

Clue Words 

Number of 

Patterns 

COM-SEED predicate + object 3462 1007 

 subject + predicate 33034 1230 

 both 36373 2237 

GEN-SEED predicate + object 3284 360 

 subject + predicate 50556 1217 

 both 53709 1577 

4.2.   Within-field Pattern Extensibility 

We conducted extraction using 4 different combinations of seed word selection 

strategies and pattern types: 

1) COM-SEED. This strategy used COM-SEED to obtain patterns in both 

pattern types; 

2) GEN-SEED. This strategy used GEN-SEED to obtain patterns in both 

pattern types; 

3) COM2PO&GEN2SP, using COM-SEED to acquire patterns of 

Predicate + Object and GEN-SEED for patterns of Subject + Predicate; 

4) GEN2PO&COM2SP, using GEN-SEED to extract patterns of Predicate 

+ Object and COM-SEED for patterns of Subject + Predicate. 
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        Table 5 presents evaluation results on within-field evaluation data 

collections using the above four pattern acquisition strategies with a threshold of 

5 (article contains at least five DUS was identified as data use article).  It shows 

that there are slight differences on identification performance for different 

pattern strategies. The best performance is achieved under COM-SEED or 

COM2PO&GEN2SP after 300 iterations. The F-1 value reaches 85.45% after 

300 iterations. The COM-SEED strategy produced the best identification 

performance (F-1 = 86.73% at 275th iterations). 

Table 5. Performance of Within-field Data Usage Identification 

Pattern Acquisition 

Strategies 
At 300th Iterations 

Best Performance During 

Iterations (based on F-1) 

 Precision Recall F-1 Precision Recall F-1 

COM-SEED 79.13% 92.86% 85.45% 86.73% 86.73% 86.73% 

GEN-SEED 78.76% 90.82% 84.36% 88.17% 83.67% 85.86% 

COM2PO&GEN2SP 79.13% 92.86% 85.45% 80.53% 92.86% 86.26% 

GEN2PO&COM2SP 78.76% 90.82% 84.36% 86.46% 84.69% 85.57% 
 

        Figure 2 illustrated the change of the identification performance during 

200-300 iterations on precision, recall and F-measure for both COM-SEED and 

GEN-SEED strategies. It shows that both strategies shared the same changing 

trends. As the number of iteration increases, the precision of identification 

decreases while the recall increases until the pattern list acquired being able to 

cover almost all the evaluation dataset. However, every changing point at the 

trend line of GEN-SEED strategy appears slightly earlier than COM-SEED, 

indicating that the speed of pattern acquisition of GEN-SEED is slightly faster. 
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Fig.2. Identification performance over iterations under COM-SEED and GEN-SEED 

Strategy 

4.3.   Cross-field Pattern Extensibility 

As specified in Section 3.3, we used two evaluation data collections in medical 

domain to test pattern extensibility of extracted patterns. Table 6 presents the 

cross-field performance with a threshold set to 2. It shows that there is little 

difference in identification performance among different pattern-acquisition 

strategies. The F-1 value reached about 88%. 
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Table 6. Performance of Cross-field Data Usage Identification 

Pattern Acquisition 

Strategies 
At 300th  Iterations 

Best Performance 

(Based on F-1) 

 Precision Recall F-1 Precision Recall F-1 

COM-SEED 90.95% 85.50% 88.14% 90.95% 85.50% 88.14% 

GEN-SEED 90.95% 85.50% 88.14% 90.95% 85.50% 88.14% 

COM2PO&GEN2SP 90.94% 85.40% 88.08% 90.94% 85.40% 88.08% 

GEN2PO&COM2SP 90.58% 78.50% 86.02% 90.58% 78.50% 86.02% 

 

        Figure 3 illustrates the changes of identification performance with increases 

of iteration under COM-SEED strategy. Table 6 and Figure 3 indicate that the 

pattern list obtained is independent of subject domains to some extent. In other 

words, the training results have the possibility to be directly used to different 

disciplines without repeating the training process. 

 

Fig.3. Cross-field Pattern Extensibility under COM-SEED Strategy Over Iterations 

5.   An Application of Data Usage Identification 

The data usage identification method investigated in this paper has many 

potential applications to facilitate knowledge discovery. To demonstrate this, we 

carried out an analysis of data usage behavior in Pattern Recognition, a field in 

Computer Science. 

        We chose 3,856 articles from the journal called Pattern Recognition for our 

analysis. The bibliographic data of these articles were obtained through querying 

the Web of Science using the articles’ DOIs. We obtained 3,782 articles out of 
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the 3, 856 with complete bibliographic information including Publication Years, 

Countries/Territories, Institutions, and Research Areas. We applied COM-SEED 

strategy with threshold of 5 to classify the 3,782 articles, which results in 2,789 

articles with data usage and 993 without data usage. 

        To facilitate the analysis, we use the term Data Usage Tendency (DUT) to 

represent the ratio of the number of articles with data usage over the total 

number of articles sharing the same attribute value. For example, DUT in year 

2000 was calculated as the number of articles with data usage published in 2000 

divided by the number of articles published in 2000 in the collection of the 

3,782 articles. 

5.1.   DUT During 2000 – 2014 

Figure 4 demonstrates the change of DUT between 2000 and 2014. It indicates 

that the number of articles with data usage statements has been increasing year 

by year during that period. By 2014, the DUT had reached as high as 89%. 

 

 

Fig.4. DUT Changes During 2000 - 2014 

5.2.   DUT Between Different Countries 

We calculated the number of articles with data usage from 76 countries or 

regions and present the data usage situation of the top 20 countries in Figure 5. It 

shows that China, USA, France, UK, and Canada are the top five countries 

producing most articles containing data usage statements in the field of Pattern 

Recognition. These countries also published more articles in this field than other 

countries. 
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Fig.5. Number of Articles with Data Usage Across Countries or Regions 

       By examining countries or regions that published more than 50 articles, we 

found that scores of DUT in high-yielding countries were high. There was no 

significant difference on DUT scores among those countries, even though they 

had quite different productivities. Figure 6 illustrates this discovery. 

 

 

Fig.6. Countries or Regions with Higher DUT Scores 
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5.3.   Other Discoveries 

We have conducted more analysis, for examples, we identified 32 high-yield 

institutions and examined their DUT to found out that institutions with high 

DUT scores usually had a clear data-dependent characteristic; Applying Web of 

Science Research Area Taxonomy, we identified 15 sub research areas in which 

the total number of articles was greater than or equal to 50. We found that the 

data usage tendency of each of these research areas was relatively uniform with 

very minor difference. Among them, GENETICS HEREDITY and 

ONCOLOGY, which are research areas closely related to biomedical, are both 

with higher DUT scores. This finding was consistent with data use and reuse 

literature indicating that biomedical fields lead data management and sharing 

among scientific disciplines. 

6.   Discussion 

This study enriched data usage identification and analysis literature by applying 

a bootstrapping strategy to automatically generate text patterns from a large data 

collection of Computer Science articles. The bootstrapping strategy enabled the 

development of a portable pattern list without the need to define relational 

templates in advance, which had been successfully employed in other studies 

(Boland et al., 2012; Zhang, et al, 2016). Our study, however, applied the 

approach differently from previous studies. For example, Boland et al. (2012) 

used bootstrapping method to linking published literatures in the field of social 

sciences to the corresponding data produced by questionnaires or interviews. 

Their judgment on the validity of the pattern was based on setting up a 

subjective threshold, and the number of initial seed word was confined to only 

one. 

        We conducted systematic evaluation of the performance of the 

bootstrapping strategy. Our overall performance for article-level classification 

was 85% in terms of F-measure, which is satisfactory as compared to 

performance reported in the literature using similar approach by Boland and 

colleagues (2012), which obtained overall 74% F-measure calculated by 97% 

precision and 60% recall on a different evaluation corpus. Our study approved 

the effectiveness and efficiency of bootstrapping, especially when there are no 

well-annotated training materials or templates. 

        Through the experiments we realized that the threshold of within-field 

extensibility was larger than that of cross-field extensibility. This indicates that 

the pattern list obtained from the training set can cover DUS more 

comprehensively, if the article to be judged is in the same field as training set. 
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We manually checked the extracted results and found that most patterns in the 

final pattern list had nothing to do with the discipline, that is, not having unique 

characteristics of Computer Science. And these patterns played a core role in 

cross-field extensibility. The final pattern list does contain patterns typical of 

Computer Science. Therefore, when applying the method to other fields, one can 

expand training set with articles in the new discipline without much change to 

the training algorithm. We also demonstrated the use of the classification results 

in scholarly text analysis and knowledge discovery in this paper. 

       This study contributes multiple data collections that were constructed in 

order to implement and evaluate the proposed strategy. These data collections, 

as listed in Table 2, involved much human effort and can be reused by other 

researchers. 

        There are still possibilities to improve our study. Firstly, interpreting a 

sentence using relational triples is difficult to include a variety of sentence 

structures. By analyzing the errors in DUS extraction, we found that the pattern 

obtained in this study might not be sufficient in dealing with the conditions 

where the seed word appears in the non-subject or non-object position of a 

sentence. Moreover, not all information in an article had been fully considered 

for accurately identifying data use and reuse. For example, the information in 

tables may be able to provide extra help on the performance of the proposed 

approach. 

7.   Conclusions and Future Research 

This study proposed and implemented a bootstrapping-based unsupervised 

training strategy to develop text patterns for identifying articles containing data 

use and reuse statements. Our evaluation experiments showed that the 

performance of data usage identification at the article level as reflected in its F-

measure could be 85% or more, demonstrating that the proposed approach is 

promising and valuable. The application of data usage identification in Pattern 

Recognition area facilitated our understanding of the progress and trends of data 

reuse and sharing in that discipline.   

        As for the applications of data usage identification and reuse analysis, it 

will benefit the construction of public datasets. Besides, by identifying data 

usage, we can build a dataset management system for a specific field to facilitate 

the dataset sharing among researchers. 

        Future research includes exploring the relationships between data usage 

and article elements other than the body of the article, such as article title, 

footnotes, tables, and charts. Also, we will conduct further examination to 
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understand differences between self-constructed datasets and reuse datasets, and 

the extraction of data objects that have been reused. Other applications based on 

data usage identification will also be investigated. 
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