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ABSTRACT
Recurrent Neural Networks (RNNs), such as Long Short-TermMem-
ory (LSTM) and Gated Recurrent Unit (GRU), have been widely
utilized in sequence representation. However, RNNs neglect vari-
ational information and long-term dependency. In this paper, we
propose a new neural network structure for extracting a compre-
hension sequence embedding by handling the entire representation
of the sequence. Unlike previous works that put attention mech-
anism after all steps of GRU, we add the entire representation to
the input of the GRU which means the GRU model takes the en-
tire information of the sequence into consideration in every step.
We provide three various strategies to adding the entire informa-
tion which are the Convolutional Neural Network (CNN) based
attentive GRU (CBAG), the GRU inner attentive GRU (GIAG) and
the pre-trained GRU inner attentive GRU (Pre-GIAG). To evalu-
ate our proposed methods, we conduct extensive experiments on
a benchmark sentiment classification dataset. Our experimental
results show that our models outperform state-of-the-art baselines
significantly.
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1 INTRODUCTION
Capturing semantics of texts is a challenge of finding machine un-
derstandable representation for nature language understanding.
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Based on researches which aim to obtain semantically meaning-
ful distributed representation of individual words, such as word
embedding [2, 16], much remains to be done to obtain satisfying
representations of sequences. Deep neural networks (DNN) have
gained great popularity to encode distributed vector representation
of a sequence.

The deep learning methods are divided into two categories. The
one is trained by unsupervised learning [7] such as the Paragraph
Vectors [12], SkipThought vectors [10], Document Vector through
Corruption (Doc2VecC) [3] and so on. The other consists of mod-
els trained specifically for a certain task [14] which depends on
downstream applications and trained by supervised learning. Sev-
eral models have been proposed such as Recurrent Neural Net-
works (RNNs) [5, 8] and Convolutional Neural Networks (CNNs)
[9]. The specifically trained sequence embedding performs better
than generic ones. For one task, CNN based models can only en-
code spatial information instead of sequential information. For RNN
based models, the most common way is to add a max or average
pooling across all time steps [13], or just pick up the hidden repre-
sentation at the last time step as the encoded embedding. However,
the last step of RNN always forgets some information and every
step of RNN only takes the information before into consideration
but the entire contextual information for all words in the sequence.

Recent years, attention mechanism proposed to use on the top
of CNN and RNN based models has shown great success in many
Natural Language Processing (NLP) tasks such as machine transla-
tion [1], question answering system [22] and recognizing textual
entailment [18] which introduces extra source of information to
guide the extraction of sequence embedding [6]. For example, atten-
tion based RNN models [1], each time-step hidden representation
is weighted by attention distribution. However, the previous atten-
tion mechanism can’t solve the problem that RNNs have. To tackle
this problem, we encode the entire contextual information of the
sequence by attention mechanism into every step of RNN.

In this paper, we study the problem mentioned above for ex-
tracting sequence embedding. The contributions are as follows:
(1) We present a novel structure to encode the entire contextual
information into every step of RNN model. (2) We propose three
various strategies to enhance the GRU model: the CNN based at-
tentive GRU (CBAG), the GRU inner attentive GRU (GIAG) and the
pre-trained GRU inner attentive GRU (Pre-GIAG). (3) We evaluate
our models on a benchmark sentiment classification dataset named
IMDB and achieve new state-of-the-art results.

2 THE PROPOSED MODEL
We encode the contextual information into every step of GRU using
the entire representation attentive GRU (ERAG) structure with
three types of attention mechanisms, which are the CNN based
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attentive GRU (CBAG), the GRU inner attentive GRU (GIAG) and
pre-trained GRU inner attentive GRU (Pre-GIAG).

2.1 Overview
Each example of the task is represented as a set (S,y), where
S = (w1,w2, · · · ,wM ) is a sequence with a length M , y ∈ Y is
the label representing the category of S . We can represent the
task as estimating the conditional probability Pr (y |S) based on the
training set, and predicting the category for testing examples by
y∗ = arдmaxy∈Y Pr (y |S).

In this section, we propose an Entire Representation Atten-
tive GRU (ERAG) structure to estimate the probability distribution
Pr (y |S) through the following layers.

Word Embedding Layer: The goal of this layer is to represent
i−th wordwi in S with a d dimensional vector xi ∈ Rd . The word
embedding is a fixed vector for each individual word, which is
pre-trained by GloVe or Word2Vec.

Entire Representation Layer: The purpose of this layer is to
get the entire contextual information of the sequence. We utilize a
common CNNmodel or a RNNmodel to encode all embeddingsX ∈

RM×d of sequence S . The output is c =Whole_Representation(X),
where c ∈ Rh .

Entire Representation Attentive GRU Layer: In this model,
we put the entire semantic representation c into input of the GRU
as an attention mechanism to take the contextual information into
consideration for every step. Then we aggregate the sequence into
a fix-length vector using the Bi-GRU model. In this work, we im-
plement GRU[4] which is parameterized as fellows:

z = σ (WZ xt + UZ ht−1)

r = σ (WT xt + UT ht−1)

s = tanh(WSxt + US (ht−1 ◦ r))

ht = (1 − z) ◦ s + z ◦ ht−1
Prediction Layer: To this end, we employ an one layer feed-

forward neural network to consume the fix-length vector, and apply
the siдmoid or so f tmax function in the output layer to get the
expected label.

2.2 CNN Based Attentive GRU (CBAG)
As attention mechanism aims at finding useful and important part
of a sequence, the first model applies the above intuition directly.
Instead of using the original words embedding to the RNN model
and putting attention mechanism above all steps of RNN model, we
weight the embedding of every word according to the contextual
representation encoded by CNN model.

First, we get a contextual representation c of the sequence based
on a CNN model.

c = CNN (X)

Then, the relevance, which is named attention in this paper,
between t−th step input xt and the contextual representation c is
calculated as follows:

αt = σ (cMxt )

whereM ∈ Rh×d is a convert matrix.

Finally, the x̃ which is xt weighted by αt is the input of the GRU.

x̃t = αt ∗ xt
In this way, every word representation is encoded by introducing

the representation of whole sequence, whichmeans all steps of RNN
are considering contextual information of the sequence. The CBAG
model is shown in Figure1.
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Figure 1: The CNN based attentive GRU model which
weights the input of GRU with attention mechanism.

2.3 GRU Inner Attentive GRU (GIAG)
Inspired by the previous work of LSTM [8] on solving the gradient
exploding problem in RNN, instead of adding contextual informa-
tion to the original input, we can apply attention deeper to the
GRU inner activation. Because these inner activation units control
the flow of the information within the hidden stage and enable
information to pass long distance in a sequence [22], we add the
entire contextual information to these active gates to influence the
hidden representation as follows:

z = σ (WZ xt + UZ ht−1 +MZ c)
r = σ (WT xt + UT ht−1 +MT c)
s = tanh(WSxt + US (ht−1 ◦ r))

ht = (1 − z) ◦ s + z ◦ ht−1
WhereMZ andMT are attention weight matrices. In this way,

the update and forget units in GRU can focus on not only long
and short term memory but also the representation of the entire
sequence as contextual information. The architecture of GIAG is
shown in Figure2.

The structure of the Pre-trained GRU inner attentive GRU(Pre-
GIAG) is nearly same as the GIAGmodel. Themain difference is that
the contextual information of whole sequence is the pre-trained
representation encoded by the GRU model. And before putting the
representation into the Entire Representation Attentive GRU Layer,
we convert the vector into a more suitable matrix space for the
second GRU model. We convert the vector with one dense layer
shown bellow:

c ′ = Relu(Mconver t c)
WhereMconver t ∈ Rh×h is the weight matrix.
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Figure 2: The GRU Inner Attentive GRU which adds the en-
tire sequence representation encoded by the first GRU as
contextual information into the whole representation atten-
tive GRU layer.

3 EXPERIMENT
We evaluate our Entire Representation Attentive GRU (ERAG) struc-
ture on sentiment analysis task using IMDB dataset and compare it
with state-of-the-art sentence embedding methods.

3.1 Dataset
The IMDB movie review dataset contains 50,000 movies reviews
categorized as either positive or negative. It comes with predefined
train/test split [15]: 25,000 reviews are used for training and 25,000
for testing. The two classes are balanced in the training and testing
sets. The result of this dataset is one of benchmarks for sentiment
analysis task.

3.2 Baselines
We compare against the following sentence representation base-
lines:
bag-of-words (BoW) [23]: A simple and the most commonly rep-
resentation of sentence.
RNN-LM [17]: A recurrent neural network based language model.
Denoising Autoencoders (DEA) [21]: A representation learned
from reconstructing original sentence x using corrupted one x̂ .
Word2Vec+IDF andWord2Vec+AVG [16]: A representation gen-
erated through weighted average of word vectors learned using
Word2Vec.
Doc2Vec [12]: The main idea of Doc2Vec is a target word is pre-
dicted by the word embeddings of its neighbors in together with a
unique document vector learned for each document.
Skip-thought Vectors [10]: A generic, distributed sentence en-
coder that extends the Word2Vec skip-gram model to sentence
level.
Document Vector through Corruption (Doc2VecC) [3]: It rep-
resents each document as a simple average of the word embeddings
of all the words in the document. It is the state-of-the-art model.

Table 1: The result on the the IMDB dataset compared our
proposed models with all baseline models

Model Error rate %
Bag-of-Words (BOW) 12.53

Denoising Autoencoders (DEA) 11.58
Word2Vec + AVG 12.11
Word2Vec + IDF 11.28
Paragraph Vectors 10.81

Skip-thought Vectors 17.42
Doc2VecC 10.48
RNN-LM 13.59

LSTM with tuning and dropout 13.50
LSTM initialized with word2vec 10.00

CNN based attentive GRU 9.82
GRU inner attentive GRU 10.06

pre-trained GRU inner attentive GRU 9.86

3.3 Settings
We remove the stopwords using NLTK for the whole dataset. Perfor-
mances are chosen to be classification error. For our new structure,
we using Glove as pre-trained word embeddings which are set not
trainable during training.

For CBAG, we use CNN to encode the whole contextual in-
formation of the sequence. In this CNN model, we just use one
Convolutional1D layer followed by one GlobalMaxPooling1D layer,
one dropout layer, one dense layer, one dropout layer and one
BatchNormalization layer. The Convolutional1D layer is set with
250 filters and 3 kernels. The dropout rate is set as 0.5. And the
hidden dimensions of dense layers in CNN model and attention
layer are all set as 300.

For GIAG and Pre-GIAG, we use GRU model to encode the
whole information of the sequence. We set the hidden dimensions
of all steps, the weight matrix of the contextual information vector,
the second GRU model and followed dense layer are all set with
300 dimensions.

4 RESULT AND ANALYSIS
To demonstrate the effectiveness of the proposed structure which
contains three different types of attention mechanisms, we compare
our method with all baselines including state-of-the-art methods.
The results are shown as Table1.

On the one hand, the structure we proposed yields a significant
performance gain compared to BoW method. Compared to RNN-
LM, the attention mechanism of the ERAG structure leads to better
performance. Because the ERAG structure is trained by supervised
learning, it can outperform many unsupervised learning methods
such as Word2Vec+IDF/AVG and DEA. In addition, all three atten-
tion mechanism based models can take contextual information into
consideration during training the GRU model, so it can beat all
baseline models.

On the other hand, because the CBAG model combines the ad-
vantages of CNN which encodes the spacial information of whole
sequence as contextual knowledge and RNN which encodes the
sequential information of a sequence, the result of CBAG is better



than the GIAGmodel which is just modeled by RNN. In addition, the
error rate of the Pre-GIAG model is lower than the GIAG model be-
cause using the pre-trained model to get the contextual information
trained by supervised learning can encode the entire representation
better.

In summary, the structure that encoding the contextual infor-
mation of entire sequence by attention mechanism into the GRU
model is better than others.

5 RELATEDWORKS
5.1 Sentence Embedding
There are many works to extract sentence representation divided
into two mian streams. On the one hand, the model with the goal of
self-prediction inspired by auto-encoder idea makes the embedding
of a sentence useful for predicting the sentence itself. For example,
ParagraphVector [12] predict the words in sentences to get the
sentence embedding. Sequential Denoising Auto-encoders (SDAE)
[7] applies a LSTM-based encoder-decoder architecture [4] which
takes the word orders into consideration by predicts the original
sentences by decoder.

On the other hand, the model extracts sentence embedding
trained by predicting adjacent sentence such as SkipThought [10]
and FastSent [7]. A special case for this line of work is sentence
embedding learned by predicting bilingual parallel sentences with
the encoder-decoder architecture [4], which was evaluated in [7].

Apart from unsupervised sentence embedding models, the super-
vised ways construct the embedding either by max/average pooling
on the word representations in sentences, or by taking the end hid-
den state from a vanilla LSTM, which depend on the downstream
application.

5.2 Attention Model
Many recent works have shown that the performance of deep neural
networks can be improved by attention mechanism.

In attention based models, one representation is built with atten-
tion from other representation. For example, Memory Networks
[24] uses an external memory to store the knowledge and the mem-
ory are read and written on the fly with respect to the attention,
and these attentive memory are combined for inference. Since then,
many variants have been proposed to extract semantically repre-
sentation of sentence to solve all kinds of NLP tasks [11, 19].

Some works [20] try to introduce the attention mechanism into
the LSTM-RNN architecture. RNN models the input sequence word-
by-word and updates its hidden variable recurrently. In attention
based RNN models, after computing each time step hidden repre-
sentation, attention information is added to weight each hidden
representation, then the hidden states are combined with respect
to that weight to obtain the sematically representation.

6 CONCLUSIONS
We present a new neural network structure that consists attention
mechanism applied to GRU model. Our results show that all these
three models are able to outperform state-of-the-art model relying
on taking the entire contextual representation into consideration
for every step of RNN model.
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