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Abstract Understanding the evolution of research topics is crucial to detect emerging

trends in science. This paper proposes a new approach and a framework to discover the

evolution of topics based on dynamic co-word networks and communities within them.

The NEViewer software was developed according to this approach and framework, as

compared to the existing studies and science mapping software tools, our work is inno-

vative in three aspects: (a) the design of a longitudinal framework based on the dynamics

of co-word communities; (b) it proposes a community labelling algorithm and community

evolution verification algorithms; (c) and visualizes the evolution of topics at the macro

and micro level respectively using alluvial diagrams and coloring networks. A case study

in computer science and a careful assessment was implemented and demonstrating that the

new method and the software NEViewer is feasible and effective.

Keywords Science mapping � Co-word analysis � Network communities � Topic

evolution � Emerging trend detection

Introduction

Since the 1950s, big science has rapidly developed (Price and de Solla 1963). With the

flourishing of science, recognizing and grasping scientific frontiers and research trends in a

timely manner has become more important and difficult than ever for scholars and science

policymakers (Goth 2012). In face of this demand, some scholars in information science
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have focused attention on Emerging Trend Detection (Pottenger and Yang 2001; Roy et al.

2002; Kontostathis et al. 2003, 2004; Le et al. 2005).

Supporting disclosure of evolving and emerging trends in science, full-text paper dat-

abases, citation databases, abstract databases and patent databases, have gradually made

this effort more feasible. Several applications, such as ThemeRiver, Bibexcel, CiteSpace II,

Network Workbench, VOSviewer, and SciMAT, have been developed and have been used

to achieve advances in the area of Scientometrics and Informetrics (Cobo et al. 2011a).

Science maps drawn by these applications display the cognitive structure and dynamics of

a research field (Börner et al. 2003).

In this paper, we propose a set of new methods based on co-word networks and complex

network theory to reveal the evolution process of topics in a research field. Software, called

NEViewer, was also developed based on the proposed methods. As a case study, the

thematic evolution of computer science field was analyzed by only considering the papers

published in five conference proceedings.

This paper is organized as follows. ‘‘Background’’ section gives a brief overview of the

related research. ‘‘Research design’’ section introduces the proposed approach to analyze

the evolution of a research field and the software NEViewer. ‘‘Case study’’ section displays

the results of a case study. Conclusions and shortcomings of our research are drawn and

discussed in ‘‘Discussion’’ section.

Background

Emerging trend detection and topic evolution analysis

In 2003, Kontostathis put forward the emerging trend concept for subject areas arousing

the interest and discussion of more and more scholars (Kontostathis et al. 2003). Emerging

trend detection (ETD) means recognizing emerging topics and their correlations in a

scientific field. Various types of techniques have been developed to detect research trends;

the most commonly used being citation-based analysis and keyword-based analysis. Since

citation-based analysis takes longer and is not as clear as keyword-based analysis for the

representation of emerging topics, researchers are prone to use the latter.

ETD can be divided into three phases (Le et al. 2005): topic representation, topic

identification and topic verification. In the first phase, a large-scale literature dataset is

collected and used to extract research topics. The key to this phase is to normalize key-

words that represent a concept semantically. To improve the effectiveness of word sense

disambiguation and the preciseness of topic convergence, various types of machine

learning technologies have been introduced by researchers, such as Neural Network

algorithm and Latent Semantic Indexing (LSI). They has been used to identify bursting

topics (Pottenger and Yang 2001) and cluster concepts (Kontostathis et al. 2004). As the

meaning of Single Value Decomposition is indefinite in LSI, it is hard to control the effect

of topic clustering and further, the algorithm complexity is high. van Eck et al. (2010)

applied probability latent semantic analysis (PLSA) to identify topics from in a corpus of

scientific literatures; PLSA provides a kind of fuzzy clustering of the linguistic units

occurring in a corpus and reduces time complexity with a better semantic distinction effect

than LSI (Hofmann 1999). Each cluster corresponds with a topic.

In the phase of topic identification, researchers usually discover research topics with

similarity matrix and hierarchical clustering (van Eck and Waltman 2009; Klavans and

Boyack 2006). Recently, complex network theory has gradually been used in this phase,
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which has promoted knowledge network analysis as a burgeoning approach in ETD

(Amitay et al. 2004; Chen and Redner 2010). In 2009, Wallace et al. researched on

clustering in co-citation network and proved the natural advantages of community finding

algorithms in topic detection. In 2010, Chen and Redner (2010) analyzed the citation

network data for over 100 years from the Physical Review series, revealing the corre-

sponding relationship between citation network communities and the evolution process for

them.

In the third phase, the traditional method, keyword frequency, is still popular (Buente and

Robbin 2008), but researchers have started to make use of more complex methods to verify

emerging topics. Le et al. (2005) put forward a method to evaluate popularity and availability

according to six features of research topics. Lee et al. (2010) utilized data profile and par-

alleled adjacent clustering algorithm in measuring three developing phases and features of

digital library research. Schiebel et al. (2010) studied terminology diffusion model, and

methods for exploring old and new topics and their correlation structure by diachronic cluster

analysis. Tu and Seng (2012) proposed two new indexes, New Index (NI) and Published

Volume Index (PVI), to decide the emerging topics. Chavalarias and Cointet (2013) showed

the phylomemetic patterns in science evolution by analyzing some sequential structural

properties of scientific fields.

In summary, detecting the emerging trend by mixing of keywords, text mining technol-

ogies and information visualization technologies has become more prevalent than ever. With

the development of science mapping research, methods to reveal the developing state of

research topics from the aspect of network dynamics is now evolving into a new path (Herrera

et al. 2010; Liu et al. 2013). From the general experiences of science activities, we know that

time dimension should be considered in the process of verifying whether a topic is an

emerging one, a hot one, a obsolete one or a dead one. It means when considering the trend of

a special topic, its past performance should also be considered carefully. Research topics

always arise from some knowledge bases (Chen 2005). Therefore, to predict a trend in a

research field, it is essential to recognize the evolution and life cycle of all topics in this field,

and is of great significance when detecting emerging topics and forecasting trend dynamics.

Co-work network and network community

Leydesdorff, Boyack, Börner, Chen et al. have made remarkable achievements in the field

of knowledge network analysis and science mapping (Leydesdorff and Rafols 2008;

Boyack et al. 2005; Börner et al. 2003; Chen 2005). Their work showed the significance of

knowledge networks on latent knowledge discovery, recognizing research frontiers, and

ETD (Mane and Börner 2004). A Co-word network is a kind of knowledge network usually

constructed with author keywords and their co-occurrence. Previous research has shown

that co-word networks can not only serve for science mapping in a specific field, but are of

methodological significance in other knowledge networks. Compared with the traditional

Bibliometrics methods based on citation or co-citation, co-word network has more

advantages in terms of timeliness (Pottenger and Yang 2001; Roy et al. 2002).

Community, a common phenomenon in networks, is aggregated by a group of highly

intensive and closely related nodes in a network. There is a high density inside a com-

munity and a low one between different communities. In a real network, nodes belonging

to the same community are more likely to share similar attributes and functions. For

example, WWW, web pages belonging to the same community usually have similar

themes; in a scientific collaboration network, scholars share similar interests from multi-

farious research communities at different levels named invisible college or subjects.
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As a mesoscopic phenomenon, community is conducive to the cognition of relationships

between network structures and their functions, so attracts more and more scholars’

attention. Newman and Girvan’s (2004) works indicated that there exist obvious com-

munities in citation and co-author networks. Boyack et al. (2005) also revealed clusters in

global science map. The prevalent existences of communities in knowledge networks

indicate their essentiality. Lambiotte and Panzarasa (2009) held that communities, closely

related with disciplines and subjects, can be seen as a territorial partition mechanism for

science mapping and landmarks for research frontiers. In addition, communities in

knowledge networks are of great significance to knowledge creation and distribution at

different level. Wang (2013) have found that communities in social network contribute to

the reduction of collaboration costs for participants as well as discovering and transferring

knowledge.

Network community detection

Many community detection algorithms have been proposed by computer scientists and

physicists in the last decade. There are two main approaches to identify the latent structures

within a given dataset: the network topology based approach and the content-based

approach (Ding 2011). The first approach is based on Graph Theory. Modularity Maxi-

mization is a widely adopted method for community detection (Newman and Girvan 2004).

Modularity is designed to measure the strength of divisions of a network into communities.

The high modularity implies networks have dense connections within communities but

sparse connection between communities.

Although modularity was designed initially for the unweighted and undirected net-

works, it has been extended to the weighted and directed networks. However, it has been

shown that modularity is unable to detect small communities. In addition, the Modularity

Maximization method is weak on detecting overlapping communities. For this reason,

Palla et al. (2005) proposed a K-cliques algorithm, in which each node is able to be

assigned to multiple communities. Ball et al. (2011) built an algorithm for finding over-

lapping communities and improved the ability to discover either overlapping or non-

overlapping communities.

In 2008, McCain (2008) adopted the second approach and found the effectiveness of

content-based topical analysis in citation networks. Later, Wallace et al. (2009) found that

the technique developed by Blondel et al. (2008) is robust and efficient and that the results

generated can be of great use to study various facets of the structure and evolution of

science.

Research design

Scientific literatures are important carriers for scholars to publish their research outcomes

(Cobo et al. 2012; Wang et al. 2010). Usually, the authors are required to provide several

carefully selected keywords to represent the main research topic of a paper. A co-word

network is constructed based on keywords in a set of document. By adding temporal and

longitudinal information to the co-word networks, researchers are able to map the evo-

lution of a research field (Garfield 1994; Wang et al. 2010; Cobo et al. 2011b).

Based on the above idea, we propose a new approach in a longitudinal framework for

the evolution analysis, which is divided into four phases: topic representation, topic

identification, topic evolution analysis and visualization. First, we preprocessed the raw
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data and convert them into a sequence of temporal co-word networks. We assigned one

time stamp for each of those networks based on the publication date. Then, community

detection algorithms were adopted to uncover the latent community structures within the

co-word networks in each time stamp. Each community is assumed to be a corresponding

topic. After that, we determined the incidence relations among different communities.

Meanwhile, one or more representative keywords were selected to label each community

as the corresponding topic. The last step was to visualize the evolution procedures. The

new research framework and workflow is depicted in Fig. 1.

Construction of co-word network

To construct co-word network, we first define as follows: a sequential document set as

D ¼ D1;D2; . . .;Dnf g, where Dt is a collection of documents published during the period

of t, Dt ¼ dt1; dt2; . . .; dtmf g, dtm is the document numbered m during the period of t,

W ¼ w1;w2; . . .;wnf g, wk is the keyword numbered k in a document d; co-word networks

G ¼ G1;G2; . . .;Gnf g, Gt is the co-word network during the period of t. Gt ¼ V;Ef g, V is

the node set and E is the relationship set.

The definition of relationships in the co-word networks is as follows:

1. Word wa and wb, if wa 2 d and wb 2 d, then wa and wb have a co-occurrence

relationship for one time, here relationship is not weighted.

2. If wa and wb co-occurrence in n documents, then there is a connection with weight

n between wa and wb.

According to this rule, given Dt, the construction of network Gt is as follows:

1. Construct a empty co-word network Gt;

2. Traverse documents in document set D. For every document d, its conception

descriptive word W. For each w, if w does not appear in G, add w into G as a node; for

any word combination wawb in W: if there is no connection between wa and wb in G,

then build a link between them and set relationship weight to 1; if there is a connection

already, 1 is added to the link weight.

To obtain sequential co-word networks, we need to divide document sets according to

time slice. The TimeLine method and fixed time window are two commonly used methods

(Sun et al. 2007). The TimeLine method is very complicated and can not ensure an

Fig. 1 The workflow of our research framework
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effective division. So this paper applies the fixed time window method: set a time period

with length t as one time window, divide document sets into n parts, then construct co-

word network for each part respectively, and obtain co-word network sequence G.

Usually, in the workflow of science mapping, normalization and similarity measures

will be used over the data (association strength, Equivalence Index, Inclusion Index,

Jaccard Index, and Salton’s cosine) when the network of relationships between the selected

units of analysis has been built, and following by the clustering of data. In our research

framework, there is no need to perform normalization and similarity measures as we do not

process data with dimensionality reduction techniques such as principal component ana-

lysis or multidimensional scaling, or clustering algorithms. We discover knowledge

directly from networks with community detection technologies as discussed in the next

section.

Communities detecting and corresponding topic labeling

Previous research has showed that there exist communities in co-word network which are

similar with clusters from the perspective of clustering analysis in data mining. Commu-

nities at different scales represent various granularity of a research field. Lancichinetti and

Fortunato (2009) have compared several methods and found that three algorithms intro-

duced by Rosvall and Bergstrom (2007, 2008), Blondel et al. (2008) and Ronhovde and

Nussinov (2009) have an excellent performance for community detection.

After community detection, the next step is to find and label the corresponding topic for each

community. Since the basic nodes of co-word network are keywords, to find and label the

corresponding topic for each community means to find one or more core nodes inside each

community.

There are several indexes for ranking nodes in a network, such as Centralization,

Prestige and PageRank etc. (Costa et al. 2007). These indexes all rank nodes on the global

level other than regional level, so they do not match our request for ranking nodes in a

specific community. Therefore, we used the within-module degree z-score, a index, pro-

posed by Guimerà et al. (2006) to evaluate node. z-score can rank nodes well from regional

level other than global level.

zi ¼
ki

si
� k j

si

D E
j2siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk j
siÞ2

D E
j2si

� k
j
si

� �2

j2si

r

ki
s is connection number of other nodes from node i to community s, si is the community

where node i belongs, and � � �h ij2S is average number of all nodes in community s. The

higher z-score, the closer the relationship is between nodes and other nodes in the same

community. The within-module degree z-score reveals the representative nodes in a special

community, namely corresponding topic. According to Guimerà’s study, the nodes that

have a high within-module degree (z C 2.5) are hubs and representative ones.

Community evolution determining

From the perspective of knowledge sociology, science knowledge are created synergisti-

cally. Old knowledge is the base of new knowledge. In a specific research field, social
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factors such as recognized basic theories, spreading theory models and research genres will

impact, oblique or direct, hereditary characters of knowledge creation e.g. ideas, themes,

schools and theories. However, with a changing social environment, recruiting and retiring

of scholars, discovery of new scientific phenomenon, new topics emerge and interact

continually. Usually, the new topics and old ones are interconnected, which leads to the

evolution of a research field.

Once the research topics are indicated by network communities, the revolution analysis

of a research field turns into the analysis of dynamics of communities. Following the

proposition raised by Palla et al. (2007), the evolution of communities can be divided into

six forms: Birth, Growth, Merging, Contraction, Splitting and Death.

D1: Birth: communities that do not exist in the time period of t, and emerge during the

time period of t ? 1;

D2: Growth: communities exist in the time period of t, and will exist in the time period

of t ? 1 with a larger scale;

D3: Merging: two or more communities in the time period of t, and merge into a new

community in the time period of t ? 1;

D4: Contraction: communities exist in the time period of t, and will exist in the time

period of t ? 1 with a smaller scale;

D5: Splitting: communities in the time period of t and are split into two or more new

communities in the time period of t ? 1;

D6: Death: communities that exist in the time period of t, and do not exist during the

time period of t ? 1;

Each form of evolution requires analyzing the community structure in both time stamp

t and time stamp t ? 1. In our research, we simplify the evolution analysis as finding the

appropriate successors and predecessors in two sequent time windows except the Birth and

Death, in which there is no predecessors and successors respectively.

For finding predecessors and successors of communities, the similarities of different

communities should be measured. We assume that if the similarity between two com-

munities in two sequent time windows is larger than a certain threshold, the evolution

relationship exists.

We define the predecessor of community M(t?1)j as Pre(M(t?1)j) with the following

formula, in which d is the threshold value of similarity and Sim measures the similarity.

preðM tþ1ð ÞjÞ ¼ fMtjMt 2 Gt; SimðMt;Mðtþ1ÞjÞ[ dg ð1Þ

The similarity function Sim is the pivotal in the community evolution analysis. There are

three basic methods to measure community similarity: node-based measurement (Palla

et al. 2007), relation-based measurement (Berger-Wolf and Saia 2006) or a mixed one.

Node-based community similarity measuring

The basic measurement indexes of node-based method include Dot Product, Cosine,

Jaccard Coefficient and Generalized Jaccard Coefficient etc. A new weighted matching

index is given here. Given community Mx and My, their corresponding word sets are Cx and

Cy, the definition of weighted matching index is:
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SimðMx;MyÞ ¼
P

t2Cx\Cy
WðtÞ

min
P

t2Cx
WðtÞ;

P
t2Cy

WðtÞ
� � ð2Þ

W(v) is the frequency of node v, and min(x,y) is the smaller value of x and y.

If it is required that two communities are not only similar in nodes but also in node

scale, to use Dot Product is a good choice. However, in topic evolution analysis, there may

be a huge difference in node scale between communities. To allow the existence of this

situation, we can use Cosine or Generalized Jaccard Coefficient. To use Jaccard Coeffi-

cient in vector of dual attribute data is a simpler way. Weighted similarity, the steadiest

index, can be used to measure the similarity between communities under most

circumstances.

Core node-based community similarity measuring

Usually, the development of community is mainly dependent on the core nodes. Core

nodes are the important ones in a community. In our study, we use z-score to measure the

importance of nodes in a community. If a node’s within-module degree z-score C 2.5, the

node is treat as a core node. We use H(Mx) to represent the collection of core nodes in a

community Mx. Then the similarity of two communities, HS(Mx, My), can be defined as

follows:

HSðMx;MyÞ ¼ simðHðMxÞ;HðMyÞÞ ð3Þ

Here, sim function can be Cosine, Generalized Jaccard Coefficient, Dot Product, etc.

Relationship-based community similarity measuring

Berger-Wolf and Saia (2006) has proposed a relationship-based algorithm to measure the

similarity of two communities. Based on this idea, Wu et al. (2010) put forward a simple

equation, which measures the similarity of two communities Mx and My.

ESðMx;MyÞ ¼
EðxÞ \ EðyÞ
EðxÞ [ EðyÞ ð4Þ

In the formula (4), E(x) represents the collection of edges in a community Mx.

ES(Mx,My) is the similarity of two communities. jEðxÞ \ EðyÞj is the size of common edges

in Mx and My. jEðxÞ [ EðyÞj is the size of edges in the union of Mx and My.

Through the above three ways and a default threshold value, we can find the prede-

cessors and successors for any community at any time window.

Community evolution visualization

Visualizing the process of community evolution is vital to understanding the dynamic of

research field. Rosvall and Bergstrom (2010) applied alluvial diagram originated from

geography to map the evolution of network. Figure 2 provides such an example of alluvial

diagram. The colored rectangle areas in Fig. 2 represent communities and their sizes; the

colored curve areas between two time stamps denote the evolution process. If one colored

rectangle area in time stamp t divides into two same colored areas in time stamp t ? 1, it

implies that one community divides into two communities; if two colored rectangle areas
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in time stamp t merges into the same colored area in time stamp t ? 1, it implies that two

communities combine to form a large community, or a new community is created.

We adopted alluvial diagram to illustrate the evolution of research topics. However, its

shortcomings are still obvious. Firstly, the original alluvial diagram can not reflect position

of each topic during a time window; secondly, if there are two or more predecessors for

one community, the importance of each predecessor in the merging process can not be

shown.

To solve the disadvantages, some ameliorations are made to Rosvall’s method. At first,

each community is ranked in two ways: one is based on the sizes of communities; the other

is based on the degree centralities of communities. Secondly, a coloring network diagram

is introduced to visualize each community. This kind of diagram is designed to reveal more

details of the community evolution process by providing the successors and predecessors

for each node.

There are two types of coloring algorithms: the Forward Coloring algorithm and the

Backward Coloring algorithm. The forward coloring helps uncover the trend of each node

in a community and the backward coloring helps reveal the source of each node in a

community. For example, there is one community A in the time stamp Time1 (see Fig. 3)

and two communities B and C in the time stamp Time2. Communities B and C are the

successors of community A. The Forward Coloring algorithm will assign different colors

for the nodes in community A based on their divisions in time stamp Time 2. Assumed that

in the future in the time stamp Time 3, community B and community C merges into one

large community D. The Backward Coloring algorithm will assign different colors for

nodes in community D based on their sources in time stamp Time 2.

We formalize the rules of Forward Coloring and backward coloring as follows: (1)

Forward Coloring algorithm: given the community Mt in time stamp t, for any node

(keyword) v in this community, if the same keyword v also occurred in community sMt?1,i,

we let VColor(v) = AColor(sMt?1,i), in which sMt?1,i represents the successor community

of community Mt. AColor(M) represents the color of community Mt in the alluvial dia-

gram, VColor(v) denotes the color of node v in community Mt. (2) Backward Coloring

algorithm: given the community Mt?1 in time stamp t ? 1, for any node (keyword) v in

this community, if the same keyword v also occurred in community pMt,i, we let VCol-

or(v) = AColor(pMt,i), in which pMt,i represents the predecessors community of com-

munity Mt.

Further, we also adopt a hierarchical layout algorithm to the coloring network diagram,

put the core nodes in the centre area and enlarge their sizes. We want to emphasize and

show the importance of the core nodes in a community by the layout algorithm.

NEViewer

We developed software, in Java, based on the above framework and methods and named it

NEViewer (Network Evolution Viewer), which supports the NWB file format used by

Network Workbench (http://nwb.cns.iu.edu/).

We realized all of the algorithms mentioned above in NEViewer. Researchers can

choose several algorithms to detect communities, measure the similarities of communities,

rank nodes in a community or communities in a network slice, and show the details of a

community by coloring a network diagram. Some basic complex network metrics are also

supported in this software such as the PageRank score and Centrality Degree.
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Case study

Dataset

In order to evaluate the effectiveness of our method, we conducted a case study using

NEViewer. Papers from five conferences were collected, comprising the five main con-

ferences in the field of Information Retrieval, Data Mining and WWW (i.e. KDD, SIGIR,

CIKM, CSCW and JCDL). The dataset contains 7,234 papers published from 2000 to

2011. Workshop papers were excluded from the dataset. Each paper in the dataset includes

a title and an abstract. Both stemming and stop words are removed.

Fig. 2 An example of alluvial diagram

Backward Coloring Forward Coloring 

A

Time1

B

C

Time2

B

C

Time2

D

Time3

Fig. 3 The backboard coloring network and forward coloring network
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Sequential network construction

The dataset is divided into three periods according to paper’s publish year: T1 = [t2000,

t2003], T2 = [t2004, t2007] and T3 = [t2008, t2011]. 2,480 papers are included in T1, 4,283

papers in T2 and 5,517 papers in T3. Three co-word networks N1, N2 and N3 are con-

structed. In total, 1,217 nodes (keywords) and 12,076 edges appear in N1, 2,295 nodes

25,678 edges in N2, and 2,903 nodes 33,272 edges in N3. The basic network attributes are

shown in Table 1.

After constructing the sequential network, Blondel’s algorithm is applied on the data-

sets. The results are shown in Table 2.

Topic evolution analyzing

To analyze and visualize the overall topic evolution, we adopted the node-based similarity

measuring algorithm and alluvial diagram mentioned above. Figure 4 gives a global pic-

ture of the topic evolutions from 2000 to 2011, in which we ignore the communities

including 10 nodes or less because they usually do not have palpable influences on the

whole context. The global evolution discovers insights of the major topics related to

Information Retrieval, Data Mining, and the World Wide Web.

As shown in Fig. 4, the alluvial diagram displays different types of evolution mentioned

by Palla et al. (2007). The Information Retrieval community in 2004–2007 splits into

several small communities in 2008–2011. The Interaction Design community and partially

Education community in 2000–2003 merges into a big community Interaction Design in

2004–2007. Multi-touch births in 2008–2011, XML growths in 2004–2007, Navigation

contracts in 2004–2007, and Digital Library dead in 2000–2003.

In terms of network position, most of the continuous topics fluctuate during the three

time windows. That means research communities always change their research focuses at

Table 1 Basic network attributes for three datasets

Measurements Datasets

T1 T2 T3

Nodes 1,217 2,295 2,903

Isolated nodes 9 16 17

Edges 12,076 25,678 33,272

Mean degree 19.84 22.37 22.92

Density 0.00816 0.00488 0.00395

Table 2 Communities in three datasets

Dataset Number of communities Average number of nodes
in each community

T1 23 50.71

T2 34 65.57

T3 41 69.12
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global level in a long period, even in a more specific field. We can’t see more details, as

each dataset has a 3 years span.

In order to discover how each topic evolves, we take the information retrieval subject as

an example. By focusing the Information Retrieval area in T2 in NEViewer, we acquire

Fig. 4 The global evolution base on FIVE-CONF dataset

Fig. 5 Evolution of the Topic Information Retrieval from T2 to T3
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Fig. 5, in which we focuse the process from T2 to T3. In T3, there has five different topics

labeled respectively Classification, Search, Web Search, Social Networks, and Sponsored

search.

For evaluating the validity of this process, we manually collected the program sessions

of SIGIR conference from 2008 to 2011. The results are shown in Table 3. We find that

Table 3 Conference sessions of SIGIR from 2008 to 2011

2008 2009 2010 2011

User interaction models Novel search
features

Clustering Query analysis

Web search Classification and
clustering

User model Learning to
rank

Evaluation Expansion and
feedback

Applications Retrieval
models

Collaborative filtering Web 2.0 Search engine architectures and
scalability

Social media

Learning to rank Retrieval models Link analysis & advertising Web IR

High-performance & high
dimensional indexing

Speech and
linguistic
processing

Learning to Rank Collaborative
filtering

User adaptation &
personalization

Recommenders Filtering and recommendation Query analysis

Clustering Question answering Information retrieval theory Communities

Multilingual & crosslingual
retrieval

Efficiency Language models & IR theory Image search

Relevance feedback Web retrieval Query representations &
reformulations

Web queries

Summarization Learning to Rank Automatic Classification Collaborative
filtering

Exploratory search & filtering Information
extraction

Retrieval models and ranking Multimedia IR

Multimedia retrieval Click through
models

User feedback & User Models Summarization

Query analysis & models Vertical search Web IR and social media search Query
suggestions

Non-topicality Interactive search Document structure & adversarial
information retrieval

Linguistic
analysis

Probabilistic models Multimedia Users and interactive IR Effectiveness

Analysis of social Networks Federated,
distributed search

Document representation and
content analysis

Multilingual
IR

Question-answering Industry track
speakers

Test-collections Recommender
systems

Social tagging Evaluation and
measurement

Query log analysis Test
collections

Content analysis Query formulation Summarization & user feedback

Learning models for IR Spamming Query analysis

Text classification Effectiveness measures

Multimedia information retrieval

Non-English IR & evaluation
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during 2008 and 2010, there is at least one session on classification, which can be used to

explain the community labeled classification. Similarly, almost every year, there is a

session named Web IR or Web Search, which might correspond to the community labeled

Web search. Social media and Web 2.0 became important in recent years, and almost every

Fig. 6 Backward coloring networks for the five communities. a Backward coloring network for
Classification. b Backward coloring network for Search. c Backward coloring network for Web Search.
d Backward coloring network for Social Network. e Backward coloring network for Sponsored Search
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year, there is a session related to Social media and communities. We also find a small

community named sponsored search, this is a comparatively new topic related to the

sessions Link Analysis & Advertising and Web IR. For all of these detected communities,

we actually find the similar conference sessions in the real conferences programs, which

demonstrate, in a manner, the validity and effectiveness of our work.

In order to respectively reveal the nodes succeeded from the topic Information Retrieval

in the five communities, five coloring networks are shown in Fig. 6. The sizes of nodes

reflect the accumulative frequency that occurred during 2008–2011. In Fig. 6a, we find the

community labeled Classification consists of many green keywords, such as machine

learning, information extraction, data mining, clustering and ranking etc., which suc-

ceeded from the previous topic Information Retrieval. Other figures in Fig. 6 look similar.

In these diagrams, pink nodes did not succeed from a previous topic Information Retrieval.

From Fig. 6 we can find that though one node is selected as the label of each community,

considering more distinct core nodes (keywords) will help understanding of the corre-

sponding topic of each co-word community.

Discussion

What is the first and vital problem facing to the emerging trend detection and topic

evolution analysis? It is how to define a topic and its evolutionary relationship. In the field

of information retrieval and data mining, a topic is usually represented by a word cluster

including several frequent co-occurring words, named the bag-of-words model. In our

research framework, the bag-of-words model is transferred and adopted, we use the word

communities in a co-word network to emblematize research topics. So the topic detection

is replaced by community finding in our framework. One or more core nodes in a com-

munity, are moreover, skillfully selected as the representative of a corresponding topic. We

do not consciously evade the overlapping problems in the community finding phase. In

fact, we provide a overlapping algorithm in NEViewer, but we think that it will be more

complicated at the later phases when considering the overlapping problem as well, espe-

cially at the coloring network visualization phase.

Either from the perspective of informetrics or complex networks, it is a challenge to

judge whether there are evolutionary relationships among research topics and what kind of

evolutionary forms they take. Firstly, in informetrics, we need a whole comparative ana-

lysis including research background, research goals, research methods, many scholars are

focused on these two topics; secondly, from the perspective of complex network, we need

to carefully analyze nodes, edges, structures even motifs in the two communities.

To simplify the problem, we regard similarity measurement as the most viable way for

verifying the evolutionary relationships and offered sevrial similarity indexes in NE-

Viewer. Considering the representing forms of topics, the node-based similarity index is

chosen as more comprehensible and adaptable than others to achieve our purposes. A

problem facing a relation-based index is the sparsities of real communities. In fact, if the

weights of edges are taken into account, the relation-based index will face more

conundrums.

Difficulty in choosing a matchable community detection algorithm and preset a

appropriate similarity threshold are also challenging problems. A threshold directly

determines the verification of community evolution. If we adjust the community detection

algorithm and similarity threshold in NEViewer, the alluvial diagram changes accordingly.

Therefore, we need to determine how to choose a matchable community detection
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algorithm and preset an assortive threshold values for different research fields (science,

social science, and humanities) and on multiple research scales (discipline level, subject

level, selected topics level). The default threshold value is 0.2 in NEViewer, which can be

adjusted by users at any time.

The experimental study conducted with NEViewer has demonstrated six forms of

evolution: Birth, Growth, Merging, Contraction, Splitting and Death. In the six forms,

Splitting and Merging all lead to the emergence of new topics. Usually there are some

precursors before a new topic emerging in science. To explore the precursors and the

causes will help predicting the dynamics of topics and research frontiers. Growth means

the expansion of research objects under a topic, while Contraction reflects the decadence of

research topics. Death attributes to the constant Contraction. These evolutionary states are

of great significance in ETD.

At present, several research software tools have been developed for visualizing

knowledge structures, research frontiers, hot topics, and research evolution, such as Bib-

excel, Science of Science Tool, Citespace, VOSViewer, Network Workbench, SciMat etc.

Cobo et al. (2012) analysed the characteristics of these tools in detail. Compared with the

existing software tools, NEViewer focuses more on the dynamics of a research field.

Through alluvial diagrams and coloring network, the macro evolution processes and micro

evolution details are all considered and disclosed in a way.

Conclusion

In this paper, we propose a new research approach based on dynamic co-word networks. In

our research framework, we focus on the relationships among keywords other than their

frequencies. Community theory is adopted in order to discover the evolution of commu-

nities at the mesoscopic level. A powerful software named NEViewer was developed under

the guidance of our research approach, which incorporates methods, algorithms, and

measures in science mapping workflows. A case study was implemented with the support

of NEViewer and the results indicate the existence of six forms of topic evolution.

When compared to the existing research, our work is innovative in three aspects: (a) the

design of a longitudinal framework based on the dynamics of co-word communities; (b) it

proposes a community labelling algorithm and community evolution verification algo-

rithms; (c) and visualizes the evolution of topics at the macro and micro level respectively

using alluvial diagrams and coloring networks. NEViewer can not only be applied to co-

word networks, but also to other bibliometric networks, such as cocitation networks,

coauthor networks, and even social networks.

As we focus more on network evolution analysis, our research is lacking on the pro-

cessing of raw data and the building of networks, thus there still remains some disad-

vantages in our study. First, the algorithm needs to be improved in the phase of

constructing co-word networks, second the community evolution verification algorithm is

rough to some extent, third the coloring network can not match the overlapping community

detection algorithm. However it is an innovation to represent research topics and track their

evolution by the dynamics of co-word communities in scientometrics. In the future, we will

try more complex and powerful community evolution verification algorithms (Lin et al.

2008; Bródka et al. 2013) to find appropriate similarity thresholds in diverse research

fields, choose matched algorithms for varied disciplines, and expand the functions of

NEViewer by tracking key events in a specific research field.

1268 Scientometrics (2014) 101:1253–1271

123



Acknowledgments We thank all who helped to improve NEViewer by giving us very valuable sugges-
tions and comments. This project is supported by the National Natural Science Foundation of China (Grant
No. 71003078, Grant No. 71173249), the Fundamental Research Funds for the Central Universities, and the
Program for New Century Excellent Talents in University.

References

Amitay, E., Carmel, D., Herscovici, M., et al. (2004). Trend detection through temporal link analysis.
Journal of the American Society for Information Science and Technology, 55(14), 1270–1281.

Ball, B., Karrer, B., & Newman, M. (2011). Efficient and principled method for detecting communities in
networks. Physical Review E, 84(3), 36103.

Berger-Wolf, T. Y., & Saia, J. (2006). A framework for analysis of dynamic social networks. In Proceedings
of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Phil-
adelphia, PA, USA, pp. 523–528.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of
Information Science and Technology, 37(1), 179–255.

Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3),
351–374.
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